Removal of arsenic from water through adsorption onto metal oxide-coated material

$15.95

Removal of arsenic from water through adsorption onto metal oxide-coated material

Sharf Ilahi Siddiqui, Saif Ali Chaudhry

Arsenic, a metalloid having a terrible impact on human health, is threatening the world continuously. It has become a curse for more than 20 countries and can be gauged from the fact that over 100 million peoples of Bangladesh and Bengal province of India are consuming arsenic contaminated ground water having concentration more than the WHO permissible limit. Traditional techniques used for removal of both forms of arsenic were not suitable for the As(III) form. Adsorption is a preferable method and different types of solid materials particles being used are fine powders that are difficult to separate from water. Moreover, fine powders cannot be used in column applications because of their low hydraulic conductivity. That is why; researchers have proposed metal oxide-coated media for use in adsorption technique. Recently, researchers have developed metal oxide coated adsorbents including, sand, natural rock, ceramic materials, activated carbon, perlite, zeolite, and some organic polymers being used as surface materials. In this review, most of the valuable literature available on arsenic remediation by adsorption using coated adsorbents and existing purification methods for drinking water; wastewater; industrial effluents, and technological solutions for arsenic have been listed. Herein, arsenic sorption by different coated materials surveyed and their sorption efficiencies have been compared. Arsenic adsorption behaviour in presence of other impurities and their separation/regeneration techniques has also been discussed.

Keywords
Heavy Metal, Arsenic, Arsenic Effect, Arsenic Remediation, Adsorption, Iron Oxide

Published online 4/25/2017, 51 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Sharf Ilahi Siddiqui, Saif Ali Chaudhry, ‘Removal of arsenic from water through adsorption onto metal oxide-coated material’, Materials Research Foundations, Vol. 15, pp 227-276, 2017

DOI: https://dx.doi.org/10.21741/9781945291333-9

The article was published as article 9 of the book Applications of Adsorption and Ion Exchange Chromatography in Waste Water Treatment

References
[1] J. W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry. Longmans, Green, London, p 9 (1954).
[2] B. K. Mandal, K. T. Suzuki, Arsenic round the world: a review, Talanta 58 (2002) 201-235. https://doi.org/10.1016/S0039-9140(02)00268-0
[3] P. L. Smedley, D. G. Kinniburgh (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17(5) (2002) 517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
[4] R. J. Bowell, C. N. Alpers, H. E. Jamieson, D. K. Nordstrom, J. Majzlan, Arsenic: Environmental Geochemistry, Mineralogy and Microbiology, Reviews in Mineralogy and Geochemistry, p 79. 2015. ISSN 1529-6466, ISBN 978-0-939950-94-2.
[5] E. Lombi, W. W. Wenzel, D. C. Adriano, Arsenic-contaminated soils: II Remedial action. In: Wise DL, Trantolo DJ, Eichon EJ, Inyang HI, Stottmeister U (2000b) Remediation Engineering of Contaminated Soils. Marcel Dekker, New York, pp 739-758.
[6] J. Matschullat, Arsenic in the geosphere – a review, Sci. Total Environ. 249(1-3) (2000) 297-312. https://doi.org/10.1016/S0048-9697(99)00524-0
[7] E. T. Mackenzie, R. J. Lamtzy, V. Petorson, (1979), Global trace metals cycles and predictions. J. Int. Assoc. Math. Geol. 6 (1979) 99-142. https://doi.org/10.1007/BF01028961
[8] S. Wang, C. N. Mulligan, Occurrence of arsenic contamination in Canada: sources, behavior and distribution, Sci. Total Environ. 366 (2006) 701-721. https://doi.org/10.1016/j.scitotenv.2005.09.005
[9] Ringbom (1963) Complexation in Analytical Chemistry. Inter science-Wiley, New York.
[10] I. Bodek, W. J. Lyman, W. F. Reehl, D. H. Rosenblatt, (1998) Environmental Inorganic Chemistry: Properties, Processes and Estimation Methods. Pergamon Press, USA.
[11] H. Hasegawa, M. Matsui, S. Okamura, M. Hojo, N. Iwasaki, Y. Sohrin, Arsenic speciation including ‘hidden’ arsenic in natural waters, Appl. Organometal. Chem. 13 (1999) 113-119. https://doi.org/10.1002/(SICI)1099-0739(199902)13:2<113::AID-AOC837>3.0.CO;2-A
[12] X. C. Le, (2002) Arsenic speciation in the environment and humans. In: Franken berger Jr WT (ed) Environmental Chemistry of Arsenic, Marcel Dekker, New York, p 95-116.
[13] M. Styblo, L. M. D. Razo, L. Vega, D. R. Germolec, E. L. L. Cluyse ELL, G. A. Hamilton, W. Reed, C. Wang, W. R. Cullen, D. J. Thomas, (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells, Arch. Toxicol. 74 (2000) 289-299. https://doi.org/10.1007/s002040000134
[14] K.T. Kitchin, K. Wallace, Arsenite binding to synthetic peptides based on the Zn finger region and the estrogen binding region of the human estrogen receptor-alpha, Toxicol. Appl. Pharmacol. 206 (2006) 66-72. https://doi.org/10.1016/j.taap.2004.12.010
[15] WHO (2008) Guidelines for drinking-water quality [electronic resource]: incorporating 1st and 2nd addenda. Recommendations -3rd edn, p 1.
[16] D. K. Nordstrom, An overview of arsenic mass-poisoning in Bangladesh and West Bengal, India In: Minor Elements Arsenic, Antimony, Selenium, Tellurium and Bismuth. ln: Young C (ed) Soc Mining Metallurgy and Exploration, p 21-30 (2000).
[17] M. Rahman, M. Vahter, M. A. Wahed, N. Sohel, M. Yunus, P. K. Streatfield, (2006), Prevalence of arsenic exposure and skin lesions A population based survey in Matlab, Bangladesh J. Epidemiol. Community Health 60(3) (2006) 242-248. https://doi.org/10.1136/jech.2005.040212
[18] R. V. Hedegaard, J. J. Sloth, Speciation of arsenic and mercury in feed: why and how?, Biotechnol. Agron. Soc. Environ. 15(1) (2011) 45-51.
[19] M. Tondel, M. Rahman, A. Magnuson, I. A. Chowdhury, M. H. Faruquee, S. A. Ahmad, The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh, Environ. Health Perspect 107 (1999) 727-729. https://doi.org/10.1289/ehp.99107727
[20] J. C. Ng, J. Wang, A. Shraim, Global health problems caused by arsenic from natural sources, Chemosphere 52 (2003) 1353-1359. https://doi.org/10.1016/S0045-6535(03)00470-3
[21] R. Gürkan, U. Kır, N. Altunay, Development of a simple, sensitive and inexpensive ion-pairing cloud point extraction approach for the determination of trace inorganic arsenic species in spring water, beverage and rice samples by UV-Vis spectrophotometry, Food Chem. 180(1) (2015) 32-41. https://doi.org/10.1016/j.foodchem.2015.01.142
[22] S. A. Chaudhry, M. Ahmed, S. I. Siddiqui, S. Ahmed, Fe(III)-Sn(IV) mixed binary oxide-coated sand preparation and its use for the removal of As(III) and As(V) from water: Application of isotherm, kinetic and thermodynamics, J. Mol. Liq. 224 (2016) 431-441. https://doi.org/10.1016/j.molliq.2016.08.116
[23] T. S. Y. Choong, T. G. Chuah, Y. Robiah, F. L. G. Koay, I. Azni, Arsenic toxicity, health hazards and removal techniques from water: an overview, Desalination 217 (2007) 139-166; M. Horsfall Jnr, S. I. Ayebaemi, (2005) Effect of Temperature on the Sorption of Pb2+ and Cu2+ from Aqueous Solution by Caladium bicolor (Wild Cocoyam) Biomass, Elec. J. Biotech. 8(2) (2005) 162-169. https://doi.org/10.1016/j.desal.2007.01.015
[24] C. Han, H. Pu, H. Li, L. Deng, S. Huang, S. He, Y. Luo, The optimization of As (V) removal over mesoporous alumina by using response surface methodology and adsorption mechanism, J Hazard Mater 254-255 (2013) 301-309. https://doi.org/10.1016/j.jhazmat.2013.04.008
[25] C. Wang, H. Luo, Z. Zhang, Y. Wu, J. Zhang, S. Chen, Removal of As (III) and As (V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites, J. Hazard. Mater. 268 (2014) 124-131. https://doi.org/10.1016/j.jhazmat.2014.01.009
[26] A. K. Darban, Y. Kianinia, E. T. Nassaj, Synthesis of nano- alumina powder from impure kaolin and its application for arsenite removal from aqueous solutions, J. Environ. Health. Sci. Eng. 11(19) (2013) 1-11.
[27] K. Y. Foo, B. H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (2010) 2-10. https://doi.org/10.1016/j.cej.2009.09.013
[28] AL-Othman ZA, Inamuddin, Naushad M (2011) Adsorption thermodynamics of trichloroacetic acid herbicide on polypyrrole Th(IV) phosphate composite cation-exchanger. Chem Eng J 169:38–42 https://doi.org/10.1016/j.cej.2011.02.046
[29] M. I. Temkin, V. Pyzhev, Kinetic of ammonia synthesis on promoted iron catalyst, Acta. Physiochim. USSR 12 (1940) 327-356.
[30] L. Zeng, Arsenic Adsorption from Aqueous Solutions on an Fe (III)-Si Binary Oxide Adsorbent, Water Qual Res J Canada 39(3) (2004) 267-275.
[31] J. Lin, L. Wang, Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon, Frontiers of Environmental Science & Engineering in China 3(3) (2009) 320-32. https://doi.org/10.1007/s11783-009-0030-7
[32] F. C. Wu, R. L. Tseng, S. C. Huang, R. S. Juang, Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A mini-review, Chem. Eng. J 151(1-3) (2009) 1-9. https://doi.org/10.1016/j.cej.2009.02.024
[33] Zeldowitsch, Adsorption site energy distribution, J. Acta. Physicochem. USSR 1 (1934) 364-449.
[34] K. V. Kumar, Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon, J. Hazard Mater. 137 (2006) 1538-1544. https://doi.org/10.1016/j.jhazmat.2006.04.036
[35] W. J. Weber, J. C. Morris, Kinetics of adsorption carbon from solutions, Sanit. J. (1963) Eng. Div. Am. Soc. Civ. Eng. 89 (1963) 31-59.
[36] T. A. Khan, S. A. Chaudhry, I. Ali, Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution, J. Mol. Liq. 202 (2015) 165-175. https://doi.org/10.1016/j.molliq.2014.12.021
[37] H. D. S. S. Karunarathne, B. M. W. P. K. Amarsinghe, (2013) Fixed Bed Adsorption Column Studies for the Removal of Aqueous Phenol from Activated Carbon Prepared from Sugarcane, Energy Procedia. 34 (2013) 83-90. https://doi.org/10.1016/j.egypro.2013.06.736
[38] Z. Xu, J. G. Cai, B. C. Pan, Mathematically modeling fixed-bed adsorption in aqueous systems J. of Zhejiang University 14(3) (2013) 155-176.
[39] D. W. Hand, S. Loper, M. Ari, J. C. Crittenden, Prediction of multicomponent adsorption equilibrium using ideal adsorbed solution theory, Environ. Sci. Technol. 19(11) (1985) 1037-1043. https://doi.org/10.1021/es00141a002
[40] A. O. Ekpete, M. Horsfall Jnr, T. Tarawou, (2010) Potential of fluted and commercial activated carbons for phenol removal in aqueous systems, J. Eng. Appl. Sci. 5 (2010) 939-947.
[41] E. Diamadopoulos, S. Loannidis, G. P. Sakellaropoulos, As (V) removal from aqueous solutions by fly ash, Water Res. 27(12) (1993) 1773-1777. https://doi.org/10.1016/0043-1354(93)90116-Y
[42] L. Önnby, V. Pakade, B. Mattiasson, H. Kirsebom, Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters, Water Res. 46(13) (2012) 4111-4120. https://doi.org/10.1016/j.watres.2012.05.028
[43 M. Pena, X. G. Meng, G. P. Korfiatis, C. Y. Jing, Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ Sci Technol 40 (2006) 1257-1262. https://doi.org/10.1021/es052040e
[44] Y. M. Pajany, C. Hurel, C. Marmier, M. Romeo, Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility, Desalination 281 (2011) 93-99. https://doi.org/10.1016/j.desal.2011.07.046
[45] X. Guan, J. Du, X. Meng, Y. Sun, B. Sun, Q. Hu, Application of titanium dioxide in arsenic removal from water: A review. J Hazard Mater (215-216) (2012) 1-16. https://doi.org/10.1016/j.jhazmat.2012.02.069
[46] J. T. Mayo, C. Yavuz, S. Yean, L. Cong, H. Shipley, W. Yu, J. Falkner, A. Kan, M. Tomson, V. L. Colvin, The effect of nanocrystalline magnetite size on arsenic removal, Sci. Tech. Adv. Mater. 8 (2007) 71-75. https://doi.org/10.1016/j.stam.2006.10.005
[47] T. Tuutijärvi, J. Lu, M. Sillanpää, G. Chen, As (V) adsorption on maghemite nanoparticles, J. Hazard. Mater. 166(2-3) (2009) 1415-1420. https://doi.org/10.1016/j.jhazmat.2008.12.069
[48] L. A. Zeng, A mothod for preparing silica containing iron(III) oxide adsorbents for arsenic removal, Water Res. 37 (2003) 4351-4358. https://doi.org/10.1016/S0043-1354(03)00402-0
[49] T. Virghavan, O. S. Thirunavukkarasu, K. S. Suramanian, Removal of arsenic in drinking water by iron oxide coated sand and ferrihydrite – batch studies, Water Qual. Res. J. Can. 36 (2001) 55-70.
[50] T. A. Khan, E.A. Khan, Shahjahan, Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: Non-linear isotherm and kinetics modeling, Applied Clay. Sci. 107 (2015) 70-77. https://doi.org/10.1016/j.clay.2015.01.005
[51] S. Kong, Y. Wang, H. Zhan, M. Liu, L. Liang, Q. Hu, Competitive adsorption of humic acid and arsenate on nanoscale iron-manganese binary oxide-loaded zeolite in groundwater, J. Geochemical Exploration 144 (2014) 220-225. https://doi.org/10.1016/j.gexplo.2014.02.005
[52] T. A. Khan, S. A. Chaudhry, I. Ali, Thermodynamic and kinetic studies of As (V) removal from water by zirconium oxide-coated marine sand, Environ. Sci. Pollut. Res. 20 (2013) 5425-5440. https://doi.org/10.1007/s11356-013-1543-y
[53] B. M. Jovanović, V. L. Pesić, L. V. Rajaković, Enhanced arsenic sorption by hydrated iron (III) oxide-coated materials–mechanism and performances, Water Environ. Res. 83(6) (2011) 498-506 https://doi.org/10.2175/106143010X12851009156484
[54] O. S. Thirunavukkarasu, T. Virghavan, K. S. Suramanian, Arsenic removal from drinking water using iron oxide-coated sand, Water Air Soil Pollut. 142 (2003) 95-111. https://doi.org/10.1023/A:1022073721853
[55] V. K. Gupta, V. K. Saini, N. Jain, Adsorption of As(III) from aqueous solutions by iron oxide-coated sand, J. Colloid Interface Sci. 288(1) (2005) 55-60. https://doi.org/10.1016/j.jcis.2005.02.054
[56] J. C. Hsu, C. J. Lin, C. H. Liao, S. T. Chen, Removal of As(V) and As(III) by reclaimed iron-oxide coated sands, J. Hazard Mater 153(1-2) (2008) 817-826. https://doi.org/10.1016/j.jhazmat.2007.09.031
[57] J. Mähler, I. Persson, Rapid adsorption of arsenic from aqueous solution by ferrihydrite-coated sand and granular ferric hydroxide, Appl Geochem 37 (2013) 179-189. https://doi.org/10.1016/j.apgeochem.2013.07.025
[58] I. M. M. Rahman, Z. A. Begum, H. Sawai, T. Maki, H. Hasegawa, Decontamination of spent iron-oxide coated sand from filters used in arsenic removal, Chemosphere 92 (2) (2013) 196-200. https://doi.org/10.1016/j.chemosphere.2013.03.024
[59] Y. Huang, J. K. Yang, A. A. Keller, Removal of arsenic and phosphate from aqueous solution by metal (Hydr-) oxide coated sand, ACS Sustainable Chem. Eng. 2(5) (2014) 1128-1138. https://doi.org/10.1021/sc400484s
[60] S. K. Maji, Y. H. Kao, C. W. Liu, Arsenic removal from real arsenic-bearing groundwater by adsorption on iron-oxide-coated natural rock (IOCNR), Desalination 280 (1-3) (2011) 72-79. https://doi.org/10.1016/j.desal.2011.06.048
[61] S. K. Maji, Y. H. Kao, C. J. Wang, G. S. Lu, J. J. Wu, C. W. Liu, Fixed bed adsorption of As (III) on iron-oxide-coated natural rock (IOCNR) and application to real arsenic-bearing groundwater, Chem. Eng. J. 203 (2012) 285-293. https://doi.org/10.1016/j.cej.2012.07.033
[62] S. K. Maji, Y. H. Kao, P. Y. Liao, Y. J. Lin, C. W. Liu, Implementation of the adsorbent iron-oxide-coated natural rock (IOCNR) on synthetic As (III) and on real arsenic-bearing sample with filter, Appl. Surf. Sci. 284 (2013) 40-48. https://doi.org/10.1016/j.apsusc.2013.06.154
[63] S. Kundu, A. K. Gupta, Adsorptive removal of As (III) from aqueous solution using iron oxide coated cement (IOCC): evaluation of kinetic, equilibrium and thermodynamic models, Sep. Purif. Technol. 52(2) (2006) 165-172. https://doi.org/10.1016/j.seppur.2006.01.007
[64] S. Kundu, A. K. Gupta, Arsenic adsorption onto iron oxide-coated cement (IOCC): Regression analysis of equilibrium data with several isotherm models and their optimization, Chem. Eng. J. 122(1-2) (2006) 93-106. https://doi.org/10.1016/j.cej.2006.06.002
[65] S. Kundu, A. K. Gupta, Adsorption characteristics of As (III) from aqueous solution on iron oxide coated cement (IOCC), J. Hazard Mater. 142(1-2) (2007) 97-104. https://doi.org/10.1016/j.jhazmat.2006.07.059
[66] A. V. V. Rodriguez, J. R. R. Mendez, Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles, J. Environ. Manage 114 (2013) 225-231. https://doi.org/10.1016/j.jenvman.2012.10.004
[67] A. Yürüm, Z. O. K. Ataklı, M. Sezen, R. Semiat, Y. Yürüm, Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water, Chem. Eng. J 242 (2014) 321-332. https://doi.org/10.1016/j.cej.2014.01.005
[68] M. Jang, W. Chen, F. S. Cannon, Preloading hydrous ferric oxide into granular activated carbon for arsenic removal, Environ. Sci. Technol. 42(9) (2008) 3369-3374. https://doi.org/10.1021/es7025399
[69] Q. L. Zhang, N. Y. Gao, Y. C. Lin, B. Xu, L. S. Le, Removal of arsenic(V) from aqueous solutions using iron-oxide-coated modified activated carbon, Water Environ. Res. 79(8) (2007) 931-936. https://doi.org/10.2175/106143007X156727
[70] W. Jiang, X. Chen, Y. Niu, B. Pan, Spherical polystyrene-supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water, J. Hazard Mater. 243 (2012) 319-325. https://doi.org/10.1016/j.jhazmat.2012.10.036
[71] I. A. Katsoyiannis, A. I. Zouboulis, Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials, Water Res. 36(20) (2002) 5141-5155. https://doi.org/10.1016/S0043-1354(02)00236-1
[72] S. Hokkanen, E. Repo, S. Lou, M. Sillanpä, Removal of arsenic (V) by magnetic nanoparticle activated microfibrillated cellulose, Chem. Eng. J. 260 (2015) 886-894. https://doi.org/10.1016/j.cej.2014.08.093
[73] X. Guo, Y. Du, F. Chen, H. S. Park, Y. Xie, (2007) Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (β-FeOOH): EXAFS study, J. Colloid Interface Sci. 314 (2) (2007) 427-433. https://doi.org/10.1016/j.jcis.2007.05.071
[74] A. Sigdel, J. Park, H. Kwak, P. K. Park, (2016) Arsenic removal from aqueous solutions by adsorption onto hydrous iron oxide-impregnated alginate beads, J. Ind. Eng. Chem. 35 (2016) 277-286. https://doi.org/10.1016/j.jiec.2016.01.005
[75] A. I. Zouboulis, I. A. Katsoyiannis, Arsenic removal using iron oxide loaded Alginate, J. Ind. Eng. Chem. 41(24) (2002) 6149-6155. https://doi.org/10.1021/ie0203835
[76] R. Chen, C. Zhi, H. Yang, Y. Bando, Z. Zhang, N. Sugiur, D. Golberg, Arsenic(V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes, J. Colloid Interface Sci. 359(1) (2011) 261-268. https://doi.org/10.1016/j.jcis.2011.02.071
[77] P. Sabbatini, F. Yrazu, F. Rossi, G. Thern, A. Marajofsky, M. M. Fidalgo de Cortalezzi, Fabrication and characterization of iron oxide ceramic membranes for arsenic removal. Water Res 44(19) (2010) 5702-5712. https://doi.org/10.1016/j.watres.2010.05.059
[78] Z. Veličković, G. D. Vuković, A. D. Marinković, M. S. Moldovan, A. A. Perić-Grujić, P. S. Uskoković, M. D. Ristić, Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes, Chem. Eng. J. (181-182) (2012) 174-181. https://doi.org/10.1016/j.cej.2011.11.052
[79] B. S. Tawabini, S. F. Al-Khaldi, M. M. Khaled, M. A. Atieh, Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes, J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 46(3) (2011) 215-223. https://doi.org/10.1080/10934529.2011.535389
[80] S. Vadahanambi, S. H. Lee, W. J. Kim, I. O. Kwon, Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-Iron oxide nanostructures, Environ. Sci. Technol. 47(18) (2013) 10510-10517. https://doi.org/10.1021/es401389g
[81] X. Xie, K. Pi, Y. Liu, C. Liu, J. Li, Y. Zhu, C. Su, T. Ma, Y. Wang, In-situ arsenic remediation by aquifer iron coating: Field trial in the Datong basin, China. J. Hazard. Mater. 302 (2016) 19-26. https://doi.org/10.1016/j.jhazmat.2015.09.055
[82] X. Xie, Y. Wang, K. Pi, C. Liu, J. Li, Y. Liu, Z. Wang, M. Duan, (2015) In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study, Sci. Total Environ. 527-528 (2015) 38-46. https://doi.org/10.1016/j.scitotenv.2015.05.002
[83] Y. Glocheux, A. B. Albadarin, J. Galán, E. Oyedoh, C. Mangwandi, C. Gérente, S. J. Allen, G. M. Walker, Adsorption study using optimised 3D organised mesoporous silica coated with Fe and Al oxides for specific As(III) and As(V) removal from contaminated synthetic groundwater, Micropor. Mesopor. Mat. 198 (2014) 101-114. https://doi.org/10.1016/j.micromeso.2014.07.020
[84] C. S. Jeon, K. Baek, J. K. Park, Y. K. Oh, S. D. Lee, Adsorption characteristics of As(V) on iron-coated zeolites, J. Hazard. Mater. 163(2-3) (2009) 804-808. https://doi.org/10.1016/j.jhazmat.2008.07.052
[85] Y. F. Pan, C. T. Chiou, T. F. Lin, Adsorption of arsenic (V) by iron-oxide-coated diatomite (IOCD), Environ. Sci. Pollut. Res. Int. 17(8) (2010) 1401-1410. https://doi.org/10.1007/s11356-010-0325-z
[86] M. G. Mostafa, Y. H. Chen, J. S. Jean, C. C. Liu, Y. C. Le, Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite, J. Hazard. Mater. 187(1-3) (2011) 89-95. https://doi.org/10.1016/j.jhazmat.2010.12.117
[87] J. L. Matheu, A. J. Gadgil, S. E. Addy, K. Kowolik, Arsenic remediation of drinking water using iron-oxide coated coal bottom ash, J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 45(11) (2010) 1446-1460. https://doi.org/10.1080/10934529.2010.500940
[88] L. S. Yadav, B. K. Mishra, A. D. Kumar, K. K. Paul, (2014) Arsenic removal using bagasse fly ash- iron coated and sponge iron char, J. Environ. Chem. Eng. 2(3) (2014) 1467-1473. https://doi.org/10.1016/j.jece.2014.06.019
[89] D. Pokhrel, T. Viraraghavan, Organic arsenic removal from an aqueous solution by iron oxide-coated fungal biomass: An analysis of factors influencing adsorption, Chem. Eng. J. 140(1-3) (2008) 165-172. https://doi.org/10.1016/j.cej.2007.09.038
[90] T. Sheng, S. A. Baig, Y. Hu, X. Xue, X. Xu, Development, characterization and evaluation of iron-coated honeycomb briquette cinders for the removal of As(V) from aqueous solutions, Arabian J. Chem. 7(1) (2014) 27-36. https://doi.org/10.1016/j.arabjc.2013.05.032
[91] T. V. Nguyen, S. Vigneswaran, H. N. Ngo, J. Kandasamy, Arsenic removal by iron oxide coated sponge: Experimental performance and mathematical models, J. Hazard. Mater. 182(1-3) (2010) 723-729. https://doi.org/10.1016/j.jhazmat.2010.06.094
[92] X. Meng, G. P. K. Ofiatis, S. Christodoulatos, S. Bang, (2001) Treatment of arsenic in Bangladesh wellwater using a household co-precipitation and filtration system, Water Res. 35 (2001) 2805-2810. https://doi.org/10.1016/S0043-1354(01)00007-0
[93] G. Chen, Y. Wang, L. H. M. Tan, X. Yang, L. S. Tan, Y. Chen, H. Y. J. Chen, (2010) Measuring ensemble-averaged surface-enhanced raman scattering in the hotspots of colloidal nanoparticle dimers and trimmers, J. Am. Chem. Soc. 132 (2010) 3644-3645. https://doi.org/10.1021/ja9090885
[94] L. Bai, X. J. Ma, J. F. Liu, X. M. Sun, D. Y. Zhao , D. G. Evans, (2010) Rapid separation and purification of nanoparticles in organic density gradients, J. Am. Chem. Soc. 132(7) (2010) 2333-2337. https://doi.org/10.1021/ja908971d
[95] E. A. Deliyanni, L. K. Nalbandian, A. Matis, (2006) Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent, J. Colloid Interface Sci. 302 (2006) 458-466. https://doi.org/10.1016/j.jcis.2006.07.007
[96] E. A. Deliyanni, D. N. Bakoyannakis, A. I. Zouboulis, K. A. Matis, Sorption of As (V) ions by akaganeite-type nanocrystals, Chemosphere 50 (2003) 155-163. https://doi.org/10.1016/S0045-6535(02)00351-X
[97] I. Akin, G. Arslan, A. Tor, M. Ersoz, Y. Cengeloglu, Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud, J. Hazard. Mater. (235-236) (2012) 62-68. https://doi.org/10.1016/j.jhazmat.2012.06.024
[98] C. T. Yavuz, J. T. Oh, W. W. Yu, A. Prakash, J. C. Falkner, S. Yean, L. Cong, H. J. Shipley, A. Kan, M. Tomson, D. Natelson, V. L. Colvin, Low field magnetic separation of monodisperse Fe3O4 nanocrystals, Science 314(5801) (2006) 964-967. https://doi.org/10.1126/science.1131475
[99] V. Chandra, J. Park, Y. Chun, J. W. Lee, I. Hwang, K. S. Kim, Water dispersible magnetite reduced graphene oxide composites for arsenic removal, ACS Nano 4(7) (2010) 3979-3986. https://doi.org/10.1021/nn1008897
[100] A. Khodabakhshi, M. M. Amin, M. Mozaffari, Synthesis of magnetite nanoparticles and evaluation of its efficiency for arsenic removal from simulated industrial wastewater Iran, J. Environ Health Sci. Eng. 8(3) (2011) 189-200.
[101] I. Ali, New generation adsorbents for water treatment, Chem. Rev. 112(10) (2012) 5073-5091 https://doi.org/10.1021/cr300133d
[102] L. Cumbal, J. Greenleaf, D. Leun, A. K. S. Gupta, Polymer supported inorganic nanoparticles: characterization and environmental applications, React. Funct. Polym. 54(1-3) (2003) 167-180. https://doi.org/10.1016/S1381-5148(02)00192-X
[103] M. G. Mostafa, J. Hoinkis, Nanoparticle adsorbents for arsenic removal from drinking water: a review, Int. J. Environ. Sci. Manage. Eng. Res. 1 (2012) 20-31.
[104] G. Z. Kyzas, K. A. Matis, Methods of arsenic wastes recycling: Focus on flotation, J. Mol. Liq. 214 (2016) 37-45. https://doi.org/10.1016/j.molliq.2015.11.028
[105] M. Leist, R. J. Casey, D. Caridi, The management of arsenic wastes: problems and prospects, J. Hazard. Mater. 76(1) (2000) 125-138. https://doi.org/10.1016/S0304-3894(00)00188-6
[106] D. Mohan, J. Pittman, Arsenic removal from water/wastewater using adsorbents-a critical review, J. Hazard. Mater. 142 (2007) 1-53. https://doi.org/10.1016/j.jhazmat.2007.01.006
[107] M. Dannan, S. Dally, F. Conso, Arsenic induced encephalopathy, Neurology 34 (1984) 1529. https://doi.org/10.1212/wnl.34.11.1524
[108] G. L. Dekundt, A. Leonard, J. Arany, G. J. Dubuisson, E. Delavignett, In vivo studies in male mice on the mutagenesis effects of inorganic arsenic, Mutagenesis 1 (1986) 33-34. https://doi.org/10.1093/mutage/1.1.33
[109] O. Axelson, E. Dahlgren, C. D. Jansson, S. O. Rehnuland, Arsenic exposure and mortality, A case Ref study from a Swedish copper smelter, Br. J. Ind. Med. 35 (1978) 8-15.
[110] K. S. Squibb, B. A. Fowler, The toxicity of arsenic and its compounds. In: B. A. Fowler (Ed.), Biological and Environmental effects of arsenic, Elsevier, 1983, pp 233-269. https://doi.org/10.1016/B978-0-444-80513-3.50011-6
[111] H. H. Goebel, P. E. Schmidt, J. Bohl, B. Tettenborn, G. Kramer, L. Guttman, (1990) Poly neuropathy due to arsenic intoxication: Biopsy Studies, J. Neuropathol. Exp. Neurol. (1990), 137-149. https://doi.org/10.1097/00005072-199003000-00006
[112] A. Franzblau, R. Lilis, Acute arsenic intoxication from environmental arsenic exposure, Arch. Environ. Health 44 (1989) 385-390. https://doi.org/10.1080/00039896.1989.9935912
[113] L. K. Bickley, C. M. Papa, Chronic arsenicism with vitiligo, hyperthyroidism and cancer, N. J. Med. 86 (1989) 377-380.
[114] G. R. Hoffman, Genetic Toxicology. In: M. O. Amdur, J. Doull, C. D. Klassen, Toxicology Pergmon, 4th Edition, New York, 1991, pp 201-225.
[115] S. Nordstrom, L. Beckman, I. Nordenson, Occupational and Environmental Risks in and around a smelter in Northern Sweden, Spontaneous abortion among female employers and decreased birth weight in their offspring, Hereditas 90 (1979) 291-296. https://doi.org/10.1111/j.1601-5223.1979.tb01316.x
[116] M. Rahman, M. Tondel, S. A. Ahmad, O. Axelson, Diabetes mellitus associated with arsenic exposure in Bangladesh, Am. J. Epidemiol. 148 (1998) 198-203. https://doi.org/10.1093/oxfordjournals.aje.a009624
[117] IARC, Some drinking water disinfectants and contaminants, including arsenic IARC monographs on the evaluation of carcinogenic risks to humans. International Agency for research on Cancer, WHO, Lyon, 2004, France.
[118] G. R. Kingsley, R. R. Schaffert, Micro determination of arsenic and its application to biological material, Anal. Chem. 23 (1951) 914-919. https://doi.org/10.1021/ac60054a023
[119] W. Goessler, D. Kuehnelt, Analytical methods for the determination of arsenic and arsenic compounds in the environment. In: W. T. Frankenberger Jr, (Ed.) Environmental Chemistry of Arsenic. Marcel Dekker, New York, 2002, pp 27-50.
[120] US Environmental Protection Agency (1994b) Method 2008, Methods for the Determination of Metals in Environmental Samples, Washington DC.
[121] P. A. Gallagher, C. A. Schwegel, X. Wei, J. T. Creed, (2001) Speciation and preservation of inorganic arsenic in drinking water sources using EDTA with IC separation and ICP-MS detection, J. Environ. Monit. 3 (2001) 371-376. https://doi.org/10.1039/b101658j
[122] M. R. Karagas, C. X. Le, S. Morris, J. Blum, X. Lu, V. Spate, M. Carey, V. Stannard, B. Klaue, T. D. Tosteson, Markers of low level arsenic exposure for evaluating human cancer risks in a US population, Int. J. Occup. Med. Environ. Health 14 (2001) 171-175.
[123] D. J. Swart, J. B. Simeonsson, Development of an electrothermal atomization laser-excited atomic fluorescence spectrometry procedure for direct measurements of arsenic in diluted serum, Anal. Chem. 71 (1999) 4951-4955. https://doi.org/10.1021/ac9903508
[124] B. Agahian, J. S. Lee, J. H. Nelson, R. E. Johns, Arsenic levels in fingernails as a biological indicator of exposure to arsenic, Am. Ind. Hyg. Assoc. J. 51 (1990) 646-651. https://doi.org/10.1080/15298669091370293
[125] E. A. Crecelius, Modification of the arsenic speciation technique using hydride generation, Anal. Chem. 50 (1978) 826-827. https://doi.org/10.1021/ac50027a040
[126] Environmental Protection Agency Method (1996c) Inorganic Arsenic in Water by Hydride Generation Quartz Furnace Atomic Absorption. Washington, DC.
[127] K. J. Lamble, S. J. Hill, Arsenic speciation in biological samples by on-line high-performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry, Anal. Chim. Acta. 344 (1996) 261-270. https://doi.org/10.1016/S0003-2670(96)00348-0
[128] X, C. Le, M. Ma, Speciation of arsenic compounds by using ion-pair chromatography with atomic spectrometry and mass spectrometry detection, J. Chromatogr. 764 (1997) 55-64. https://doi.org/10.1016/S0021-9673(96)00881-3
[129] S. Londesborough, J. Mattusch, R. Wennrich, Separation of organic and inorganic arsenic species by HPLC-ICP-MS, Fresenius, J. Anal. Chem. 363 (1999) 577-581. https://doi.org/10.1007/s002160051251
[130] W. H. Holl, Mechanisms of arsenic removal from water, Environ. Geochem. Health, 32 (2010) 287-290. https://doi.org/10.1007/s10653-010-9307-9
[131] A. M. Ingallinella, V. A. Pacini, R. G. Fernandez, R. M. Vidoni, G. Sanguinetti, Simultaneous removal of arsenic and fluoride from groundwater by coagulation-adsorption with polyaluminum chloride, J. Environ. Sci. Health A 46 (2011) 1288-1296. https://doi.org/10.1080/10934529.2011.598835
[132] B. An, Q. Liang, D. Zhao, Removal of arsenic (V) from spent ion exchange brine using a new class of starch-bridged magnetite nano particles, Water Res. 45-5 (2011) 1961-1972. https://doi.org/10.1016/j.watres.2011.01.004
[133] L. A. Richards, B. S. Richards, H. M. A. Rossiter, A. I. Schafer, Impact of speciation on fluoride, arsenic and magnesium retention by nanofiltration/reverse osmosis in remote Australian communities, Desalination 248 (2009) 177-183. https://doi.org/10.1016/j.desal.2008.05.054
[134] I. A. Katsoyiannis, A. I. Zouboulis, (2006) Comparative evaluation of conventional and alternative methods for the removal of arsenic from contaminated ground waters, Rev. Environ. Health 21(1) (2006) 25-41. https://doi.org/10.1515/REVEH.2006.21.1.25
[135] B. V. D. Bruggen, Advances in electro dialysis for water treatment, Advances in Membrane Technologies for Water Treatment, 2015, pp. 185-203.
[136] E. Smith, R. Naidu, A. M. Alston, Arsenic in the soil environment: A review, Adv. Agron. 64 (1998) 149-195. https://doi.org/10.1016/S0065-2113(08)60504-0
[137] M. E. O. Escobar, N. V. Hue, W. G. Cutler, Recent developments in arsenic: contamination and remediation. In: S. G. Pandalai (Ed.) Recent Research Developments in Bioenergetics, 2006, pp 4:1-6.
[138] US Environmental Protection Agency (US EPA) 2000 Office of research and development, Introduction to phytoremediation. EPA/600/R-99/107.
[139] L. C. Allen, Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state atoms, J. Am. Chem. Soc. 111(25) (1998) 9003-9014. https://doi.org/10.1021/ja00207a003
[140] M. F. Hossain, Arsenic contamination in Bangladesh-An overview, Agri. Ecosys. Env. 113 (2006) 1-16. https://doi.org/10.1016/j.agee.2005.08.034
[141] G. Mu-iz, V. Fierro, A. Celzard, G. Furdin, G. G. Sánchez, M. L. Ballinas, Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe (III) and Fe (II), J. Hazard. Mater. 165(1-3) (2009) 893-902. https://doi.org/10.1016/j.jhazmat.2008.10.074
[142] Z. Liu, F. S. Zhang, R. Sasai, Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass, Chem. Eng. J. 160(1) (2010) 57-62. https://doi.org/10.1016/j.cej.2010.03.003
[143] A. O. A. Tuna, E. Özdemir, E. B. Şimşek, U. Beker, Removal of As (V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions, Chem. Eng. J. 223 (2013) 116-128. https://doi.org/10.1016/j.cej.2013.02.096
[144] V. Lenoble, O. Bouras, V. Deluchat, B. Serpaud, J. C. Bollinger, Arsenic adsorption onto pillared clays and iron oxides, .J Colloid Interf. Sci. 255(1) (2002) 52-58. https://doi.org/10.1006/jcis.2002.8646
[145] B. J. Lafferty, R. H. Loeppert, Methyl arsenic adsorption and desorption behavior on iron oxides, Environ. Sci. Technol. 39(7) (2005) 2120-2127. https://doi.org/10.1021/es048701+
[146] W. Tang, Q. Li, S. Gao, J. K. Shang, Arsenic (III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method, J. Hazard. Mater. 192(1) (2011) 131-138. https://doi.org/10.1016/j.jhazmat.2011.04.111
[147] K. P. Raven, A. Jain, R. H. Loeppert, Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes, Environ. Sci. Technol. 32 (1998) 344-349. https://doi.org/10.1021/es970421p
[148] Z. Bujňáková, P. Baláž, A. Zorkovská, M. J. Sayagués, J. Kováč, M. Timko, Arsenic sorption by nanocrystalline magnetite: An example of environmentally promising interface with geosphere, J. Hazard. Mater. 262 (2013) 1204-1212. https://doi.org/10.1016/j.jhazmat.2013.03.007
[149] S. Lin, D. Lu, Z. Liu, Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles, Chem. Eng. J. 211-212 (2012) 46-52. https://doi.org/10.1016/j.cej.2012.09.018
[150] L. Feng, M. Cao, X. Ma, Y. Zhu, C. Hu, Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal, J. Hazard. Mater. 217-218 (2012) 439-446. https://doi.org/10.1016/j.jhazmat.2012.03.073
[151] M. C. S. Faria, R. S. Rosemberg, C. A. Bomfeti, D. S. Monteiro, F. Barbosa, L. C. A. Oliveira, M. Rodriguez, M. C. Pereira, J. L. Rodrigue, Arsenic removal from contaminated water by ultrafine δ-FeOOH adsorbents, Chem. Eng. J. 237 (2014) 47-54. https://doi.org/10.1016/j.cej.2013.10.006
[152] G. Zhang, Z. Ren, X. Zhang, J. Chen, Nanostructured iron(III)-copper(II) binary oxide: A novel adsorbent for enhanced arsenic removal from aqueous solutions, Water Res 47(12) (2013) 4022-4031. https://doi.org/10.1016/j.watres.2012.11.059
[153] T. Basu, D. Nandi, P. Sen, U. C. Ghosh, Equilibrium modeling of As (III,V) sorption in the absence/presence of some groundwater occurring ions by iron(III)-cerium(IV) oxide nanoparticle agglomerates: A mechanistic approach of surface interaction, Chem. Eng. J. 228 (2013) 665-680. https://doi.org/10.1016/j.cej.2013.05.037
[154] Y. Zhang, X. Dou, B. Zhao, M. Yang, T. Takyama, S. Kato, (2010) Removal of arsenic by a granular Fe-Ce oxide adsorbent: Fabrication conditions and performance, Chem. Eng. J. 162(1) (2010) 164-170. https://doi.org/10.1016/j.cej.2010.05.021
[155] W. Zhang, J. Fu, G. Zhang, X. Zhang, (2014) Enhanced arsenate removal by novel Fe-La composite (hydr)oxides synthesized via coprecipitation, Chem. Eng. J. 251 (2014) 69-79. https://doi.org/10.1016/j.cej.2014.04.057
[156] A. Z. M. Badruddoza, Z. B. Z. Shawon, M. T. Rahman, K. W. Hao, K. Hidajat, M. Shahabuddin, Ionically modified magnetic nanomaterials for arsenic and chromium removal from water, Chem. Eng. J. 225 (2013) 607-615. https://doi.org/10.1016/j.cej.2013.03.114
[157] Y. Jin, F. Liu, M. Tong, Y. Hou, Removal of arsenate by cetyl tri methyl ammonium bromide modified magnetic nanoparticles, J. Hazard. Maters. (227-228) (2012) 461-468.
[158] M. A. Armienta, R. Rodriguez, A. Aguayao, N. Ceniceros, F. Juraez, O. Cruz, G. Villasenor, Point and regional sources of arsenic in the groundwater of Zimapan, Mexico, Acta Universitatis Carolinae Geologica 39 (1995) 285-290.
[159] W. Lianfang, H. Jianzhong, Chronic arsenicism from drinking water in some areas of Xinjiang, China. In: J. Nriagu (Ed), Arsenic in the Environment, Part II: Human Health and Ecosystem Effects. John Wiley Inc, New York, 1994, pp 159-172.
[160] Public Health Engineering Department (1993) First phase Action Plan Report on Arsenic Pollution in Groundwater in West Bengal. Arsenic Investigation Project, Government of West Bengal, p 46.
[161] P. Bagla, J. Kaiser, India’s spreading health crisis draws global arsenic experts, Science 274 (1996) 174-175. https://doi.org/10.1126/science.274.5285.174
[162] A. H. Welch, D. B. W. John, D. R. Helsel, R. B. Wanty, Arsenic in ground water of the United States-occurrence and geochemistry, Ground Water 38(4) (2000) 589-604. https://doi.org/10.1111/j.1745-6584.2000.tb00251.x
[163] J. Bundschuh, B. Farias, R. Martin, A. Storniolo, P. Bhattacharya, J. Cortes, G. Bonorino, R. Albouy, Groundwater arsenic in the Chaco-Pampean Plain, Argentina Case study from Robles County, Santiago del Estero Province, Appl Geochem 19(2) (200) 231-243.
[164] J. M. Borogo, N. Vicent, H. Venturino, H. Infante, Arsenic in the drinking water of the city of Antofagasta: Epidemiological and clinical study before and after the installation of a treatment plant, Environ. Health. Perspect. 19 (1977) 103-105. https://doi.org/10.1289/ehp.7719103