Removal of nitrogen containing compounds by adsorption: a review
Ali Mohammad, Mohd Imran Ahamed, Arshi Amin, Inamuddin
Nitrogen occurs in all living organism. It is a key constituent in a number of compounds which are chemically and biologically of great importance. In this review, chemically and biologically active nitrogen containing compounds specially pyridine, nicotinic acid and aniline are discussed. These nitrogen containing compounds play an important role for the survival of human beings, animals as well as plants. Therefore, their importance and the threats they impose on living beings and on the environment are described briefly. Therefore, these compounds are being removed from the environment by various methods. However, in this review the adsorption method for the removal of pyridine, nicotinic acid and aniline is being discussed.
Keywords
Pyridine, Nicotinic Acid, Aniline, Adsorption Materials
Published online 4/25/2017, 44 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Ali Mohammad, Mohd Imran Ahamed, Arshi Amin, Inamuddin, ‘Removal of nitrogen containing compounds by adsorption: a review’, Materials Research Foundations, Vol. 15, pp 40-83, 2017
DOI: https://dx.doi.org/10.21741/9781945291333-3
The article was published as article 3 of the book Applications of Adsorption and Ion Exchange Chromatography in Waste Water Treatment
References
[1] R.D.R. M. Cox, Lehninger, L. Albert, Nelson, Lehninger principles of biochemistry, New York, 2000.
[2] K. Parker, L. Brunton, Goodman, L. Sanford, Lazo, S. John, Gilman, Alfred. Goodman, Gilman’s the pharmacological basis of therapeutics, New York,
[3] M.K. Mittal, T. Florin, J. Perrone, J.H. Delgado, K.C. Osterhoudt, Toxicity from the use of niacin to beat urine drug screening, Ann. Emerg. Med. 50 (2007) 587–590. https://doi.org/10.1016/j.annemergmed.2007.01.014
[4] G. Akçay, K. Yurdakoç, Removal of nicotine and its pharmaceutical derivatives from aqueous solution by raw bentonite and dodecyl ammonium-bentonite, J. Sci. Ind. Res. (India). 67 (2008) 451–454.
[5] N. Yang, X. Wang, Thin self-assembled monolayer for voltammetrically monitoring nicotinic acid in food, Colloids Surfaces B Biointerfaces. 61 (2008) 277–281. https://doi.org/10.1016/j.colsurfb.2007.09.002
[6] Z. Li, G. Yang, S. Liu, Y. Chen, Adsorption isotherms on nicotinamide-imprinted polymer stationary phase, J. Chromatogr. Sci. 43 (2005) 362–366. https://doi.org/10.1093/chromsci/43.7.362
[7] A. Pyka, J. Sliwiok, A. Niestrój, A comparison of chromatographic separation of selected nicotinic acid derivatives by TLC and HPLC techniques, Acta Pol. Pharm. 60 (2003) 327—333.
[8] A. Pyka, A. Niestroj, A. Szarkowicz, J. Sliwiok, Use of TLC and RPTLC for separation of nicotinic acid derivatives, J. Planar Chromatogr. – Mod. TLC. 15 (2002) 410–413. https://doi.org/10.1556/JPC.15.2002.6.3
[9] E. Karadaǧ, D. Saraydin, Swelling of superabsorbent acrylamide/sodium acrylate hydrogels prepared using multifunctional crosslinkers, Turkish J. Chem. 26 (2002) 863–875.
[10] K.T. N.Nanbu, F. Kitamura, T. Ohsaka, Adsorption behavior of pyridine carboxylic acids in acidic solution on a polycrystalline gold electrode surface studied by infrared reflection absorption spectroscopy Electrochem. 67 (1999) 1165.
[11] M.J.-H. M. Miłkowska, The adsorption of nicotinic acid, nicotinamide and nipecotamide from aqueous solutions on the (110) face of silver, Pol. J. Chem. Tech. 70 (1996) 783.
[12] S.M. Park, K. Kim, M.S. Kim, Adsorption of picolinic and nicotinic acids on a silver sol surface investigated by Raman spectroscopy, J. Mol. Struct. 344 (1995) 195–203. https://doi.org/10.1016/0022-2860(94)08439-O
[13] L. Roivas, P.J. Neuvonen, Reversible adsorption of nicotinic acid onto charcoal In vitro, J. Pharm. Sci. 81 (1992) 917–919. https://doi.org/10.1002/jps.2600810916
[14] M. Jurkiewicz-Herbich, Adsorption of nicotinic acid at the mercury—solution interface, J. Electroanal. Chem. 332 (1992) 265–278. doi:10.1016/0022-0728(92)80355-8. https://doi.org/10.1016/0022-0728(92)80355-8
[15] A.A. M. Qureshi, K. G. Varshney, K. Z. Alam, Adsorption of tertiary nitrogen-containing compounds on activated carbon. I. equilibrium studies of nicotinic acid in aqueous systems, Coll. and Surf. 50 (1990) 7. https://doi.org/10.1016/0166-6622(90)80249-4
[16] G. Horányi, A radiotracer study of the adsorption and electrocatalytic reduction of nicotinic acid at a platinized platinum electrode, J. Electroanal. Chem. Interfacial Electrochem. 284 (1990) 481–489. https://doi.org/10.1016/0022-0728(90)85052-7
[17] N. Nambu, T. Nagai, Adsorption of nicotinic and isonicotinic acid derivatives by hydroxyapatite from aqueous solutions., Chem. Pharm. Bull. (Tokyo). 29 (1981) 2093–2096. https://doi.org/10.1248/cpb.29.2093
[18] C.G. Pope, E. Matijević, R.C. Patel, Adsorption of nicotinic, picolinic and di-picolinic acids on monodispersed sols of α-Fe2O3 and Cr(OH)3, J. Colloid Interface Sci. 80 (1981) 74–83. https://doi.org/10.1016/0021-9797(81)90161-2
[19] R. L. Ramos, R. O. Perez, O. L. T. Rivera, M. S. B. Mendoza, Gilman’s the pharmacological basis of therapeutics., J. Basic Princ. Diffus. Theory, Exp. Appl. 11 (2009) 1.
[20] C. E. Terry, R. P. Ryan, S. S. Leffingwell, Toxicology desk reference: The toxic exposure & medical monitoring index: the toxic exposure and medical monitoring index, 5th ed.
[21] G.D. Henry, De novo synthesis of substituted pyridines, Tetrahedron. 60 (2004) 6043–6061. https://doi.org/10.1016/j.tet.2004.04.043
[22] Z. Yanli, L. Dongguang, Adsorption of pyridine on post-crosslinked fiber, J. Sci. Ind. Res. (India). 69 (2010) 73–76.
[23] G. Aylward, SI Chemical Data, 6th ed., 2008.
[24] IARC Monographs, OSHA, IARC, Washington D.C., 1985.
[25] N. Bonnard, M. T. Brondeau, S. Miraval, F. Pillière, J. C. Protois, O. Schneider. Schneider, Pyridine, Fiche Toxicologique, in: INRS (in French).
[26] Pyridine Summary & Evaluation. IARC Summaries & Evaluations. IPCS INCHEM, in: Int. Agency Res. Cancer (2000).
[27] J. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today. 53 (1999) 115–129. https://doi.org/10.1016/S0920-5861(99)00107-8
[28] D. Drijvers, H. Van Langenhove, M. Beckers, Decomposition of phenol and trichloroethylene by the ultrasound/H2O2/CuO process, Water Res. 33 (1999) 1187–1194. https://doi.org/10.1016/S0043-1354(98)00308-X
[29] B. Zhao, H. Liang, D. Han, D. Qiu, S. Chen, Adsorption of pyridine from aqueous solution by surface treated carbon nanotubes, Sep. Sci. Technol. 42 (2007) 3419–3427. https://doi.org/10.1080/01496390701511689
[30] M. Reháková, Ľ. Fortunová, Z. Bastl, S. Nagyová, S. Dolinská, V. Jorík, E. Jóna, Removal of pyridine from liquid and gas phase by copper forms of natural and synthetic zeolites, J. Hazard. Mater. 186 (2011) 699–706. https://doi.org/10.1016/j.jhazmat.2010.11.051
[31] K.V. Padoley, S.N. Mudliar, S.K. Banerjee, S.C. Deshmukh, R.A. Pandey, Fenton oxidation: A pretreatment option for improved biological treatment of pyridine and 3-cyanopyridine plant wastewater, Chem. Eng. J. 166 (2011) 1–9. https://doi.org/10.1016/j.cej.2010.06.041
[32] J.W. Bauserman, G.W. Mushrush, H. Willauer, J.H. Wynne, J.P. Phillips, J.L. Buckley, F.W. Williams, Removing organic nitrogen compounds from middle distillate fuels with a catalyst used as a filtering media, Pet. Sci. Technol. 28 (2010) 1761–1769. https://doi.org/10.1080/10916460903261731
[33] H.Bouyarmane, S.E. Asri, A. Rami, C. Roux, M.A. Mahly, A. Saoiabi, T. Coradin, A. Laghzizil, Pyridine and phenol removal using natural and synthetic apatites as low cost sorbents: Influence of porosity and surface interactions, J. Hazard. Mater. 181 (2010) 736–741. https://doi.org/10.1016/j.jhazmat.2010.05.074
[34] Y. Bai, Q. Sun, R. Xing, D. Wen, X. Tang, Removal of pyridine and quinoline by bio-zeolite composed of mixed degrading bacteria and modified zeolite, J. Hazard. Mater. 181 (2010) 916–922. https://doi.org/10.1016/j.jhazmat.2010.05.099
[35] L. Qiao, J. Wang, Microbial degradation of pyridine by Paracoccus sp. isolated from contaminated soil, J. Hazard. Mater. 176 (2010) 220–225. https://doi.org/10.1016/j.jhazmat.2009.11.016
[36] H. Zhang, G. Li, Y. Jia, H. Liu, Adsorptive removal of nitrogen-containing compounds from fuel, J. Chem. Eng. Data. 55 (2010) 173–177. https://doi.org/10.1021/je9003004
[37] D.H. Lataye, I.M. Mishra, I.D. Mall, Multicomponent sorption of pyridine and its derivatives from aqueous solution onto rice husk ash and granular activated carbon, Pract. Period. Hazardous, Toxic, Radioact. Waste Manag. 13 (2009) 218–228. https://doi.org/10.1061/(ASCE)HZ.1944-8376.0000013
[38] A.K. Mathur, C.B. Majumder, Biofiltration of Pyridine by Shewanella putrefaciens in a corn-cob packed biotrickling filter, CLEAN – Soil, Air, Water. 36 (2008) 180–186. https://doi.org/10.1002/clen.200700090
[39] D.H. Lataye, I.M. Mishra, I.D. Mall, Multicomponent sorptive removal of toxics pyridine, 2-picoline, and 4-picoline from aqueous solution by bagasse fly ash: optimization of process parameters, Ind. Eng. Chem. Res. 47 (2008) 5629–5635. https://doi.org/10.1021/ie0716161
[40] D.H. Lataye, I.M. Mishra, I.D. Mall, Pyridine sorption from aqueous solution by rice husk ash (RHA) and granular activated carbon (GAC): Parametric, kinetic, equilibrium and thermodynamic aspects, J. Hazard. Mater. 154 (2008) 858–870. https://doi.org/10.1016/j.jhazmat.2007.10.111
[41] D.H. Lataye, I.M. Mishra, I.D. Mall, Removal of pyridine from aqueous solution by adsorption on bagasse fly ash, Ind. Eng. Chem. Res. 45 (2006) 3934–3943. https://doi.org/10.1021/ie051315w
[42] R.T.Y. A. J. Hernández-Maldonado, F. H. Yang, G. Qi, Desulfurization of transportation fuels by complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites, J. Chinese Inst. Chem. Eng. 37 (2006) 9.
[43] D. Mohan, K.P. Singh, S. Sinha, D. Gosh, Removal of pyridine derivatives from aqueous solution by activated carbons developed from agricultural waste materials, Carbon N. Y. 43 (2005) 1680–1693. https://doi.org/10.1016/j.carbon.2005.02.017
[44] D. Mohan, K.P. Singh, S. Sinha, D. Gosh, Removal of pyridine from aqueous solution using low cost activated carbons derived from agricultural waste materials, Carbon N. Y. 42 (2004) 2409–2421. https://doi.org/10.1016/j.carbon.2004.04.026
[45] W.D. Henry, D. Zhao, A.K. SenGupta, C. Lange, Preparation and characterization of a new class of polymeric ligand exchangers for selective removal of trace contaminants from water, React. Funct. Polym. 60 (2004) 109–120. https://doi.org/10.1016/j.reactfunctpolym.2004.02.016
[46] J. Niu, B.E. Conway, Development of techniques for purification of waste waters: removal of pyridine from aqueous solution by adsorption at high-area C-cloth electrodes using in situ optical spectrometry, J. Electroanal. Chem. 521 (2002) 16–28. https://doi.org/10.1016/S0022-0728(02)00660-5
[47] J.H. Do, W.G. Lee, K. Theodore, H.N. Chang, Biological removal of pyridine in heavy oil by Rhodococcus sp. KCTC 3218, Biotechnol. Bioprocess Eng. 4 (1999) 205–209. https://doi.org/10.1007/BF02931930
[48] M. Stem, E. Heinzle, G.M. Kut, K. Hunge rbühler, Removal of substituted pyridines by combined ozonatio fluidized bed biofilm treatment, Water Sci. Technol. 35 (1997) 329–335. https://doi.org/10.1016/S0273-1223(97)00042-5
[49] J. Datka, M. Boczar, The effect of partial dehydroxylation and pyridine sorption on the strength of OH groups in NaHZSM-5 zeolite, Zeolites. 11 (1991) 397–400. https://doi.org/10.1016/0144-2449(91)80309-N
[50] S. Zhu, P.R.F. Bell, P.F. Greenfield, Adsorption of pyridine onto spent Rundle oil shale in dilute aqueous solution, Water Res. 22 (1988) 1331–1337. https://doi.org/10.1016/0043-1354(88)90122-4
[51] N.E. Cooke, R.P. Gaikwad, Removal of pyridine and quinoline from coal and coal extracts, Fuel. 63 (1984) 1468–1470. https://doi.org/10.1016/0016-2361(84)90360-0
[52] L. Guo, G. Li, J. Liu, P. Yin, Q. Li, Adsorption of aniline on cross-linked starch sulfate from aqueous solution, Ind. Eng. Chem. Res. 48 (2009) 10657–10663. https://doi.org/10.1021/ie9010782
[53] C. Jianguo, L. Aimin, S. Hongyan, F. Zhenghao, L. Chao, Z. Quanxing, Adsorption characteristics of aniline and 4-methylaniline onto bifunctional polymeric adsorbent modified by sulfonic groups, J. Hazard. Mater. 124 (2005) 173–180. https://doi.org/10.1016/j.jhazmat.2005.05.001
[54] F.S.H. Abram, I.R. Sims, The toxicity of aniline to rainbow trout, Water Res. 16 (1982) 1309–1312. https://doi.org/10.1016/0043-1354(82)90208-1
[55] K. László, E. Tombácz, C. Novák, pH-dependent adsorption and desorption of phenol and aniline on basic activated carbon, Colloids Surfaces A Physicochem. Eng. Asp. 306 (2007) 95–101. https://doi.org/10.1016/j.colsurfa.2007.03.057
[56] W.M. Zhang, Q.J. Zhang, B.C. Pan, L. Lv, B.J. Pan, Z.W. Xu, Q.X. Zhang, X.S. Zhao, W. Du, Q.R. Zhang, Modeling synergistic adsorption of phenol/aniline mixtures in the aqueous phase onto porous polymer adsorbents, J. Colloid Interface Sci. 306 (2007) 216–221. https://doi.org/10.1016/j.jcis.2006.10.056
[57] C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon 42 (2004) 83–94. https://doi.org/10.1016/j.carbon.2003.09.022
[58] K. Yang, W. Wu, Q. Jing, L. Zhu, Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes, Environ. Sci. Technol. 42 (2008) 7931–7936. https://doi.org/10.1021/es801463v
[59] S. H. Gheewala, A. P. Annachhatre, Biodegradation of aniline, Water Sci. Technol. 36 (1997) 53–63. https://doi.org/10.1016/S0273-1223(97)00642-2
[60] F. O’Neill, Bacterial growth on aniline: implications for the biotreatment of industrial wastewater, Water Res. 34 (2000) 4397–4409. https://doi.org/10.1016/S0043-1354(00)00215-3
[61] F. Orshansky, N. Narkis, Characteristics of organics removal by PACT simultaneous adsorption and biodegradation, Water Res. 31 (1997) 391–398. https://doi.org/10.1016/S0043-1354(96)00227-8
[62] L. Wang, S. Barrington, J.-W. Kim, Biodegradation of pentyl amine and aniline from petrochemical wastewater, J. Environ. Manage. 83 (2007) 191–197. https://doi.org/10.1016/j.jenvman.2006.02.009
[63] X. Y. Liu, B. J. Wang, C. Y. Jiang, K. X. Zhao, L. D. Harold, S. J. Liu, Simultaneous biodegradation of nitrogen-containing aromatic compounds in a sequencing batch bioreactor, J. Environ. Sci. 19 (2007) 530–535. https://doi.org/10.1016/S1001-0742(07)60088-6
[64] G. Deiber, J.N. Foussard, H. Debellefontaine, Removal of nitrogenous compounds by catalytic wet air oxidation. Kinetic study, Environ. Pollut. 96 (1997) 311–319. https://doi.org/10.1016/S0269-7491(97)00047-X
[65] X. Qi, Decomposition of aniline in supercritical water, J. Hazard. Mater. 90 (2002) 51–62. https://doi.org/10.1016/S0304-3894(01)00330-2
[66] J. O’Brien, T.F. O’Dwyer, T. Curtin, A novel process for the removal of aniline from wastewaters, J. Hazard. Mater. 159 (2008) 476–482. https://doi.org/10.1016/j.jhazmat.2008.02.064
[67] J. Garcia, H.T. Gomes, P. Serp, P. Kalck, J.L. Figueiredo, J.L. Faria, Carbon nanotube supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation, Carbon N. Y. 44 (2006) 2384–2391. https://doi.org/10.1016/j.carbon.2006.05.035
[68] J. Anotai, M.-C. Lu, P. Chewpreecha, Kinetics of aniline degradation by Fenton and electro-Fenton processes, Water Res. 40 (2006) 1841–1847. https://doi.org/10.1016/j.watres.2006.02.033
[69] L. Wojnárovits, E. Takács, Irradiation treatment of azo dye containing wastewater: An overview, Radiat. Phys. Chem. 77 (2008) 225–244. https://doi.org/10.1016/j.radphyschem.2007.05.003
[70] F. M. T. Luna, A. A. Pontes-Filho, E. D. Trindade, I. J. Silva, Jr., C. L. Cavalcante, D. C. S. Azevedo, Ind. Eng. Chem. Res. 47 (2008) 3207. https://doi.org/10.1021/ie071476v
[71] Y. Han, X. Quan, S. Chen, H. Zhao, C. Cui, Y. Zhao, Electrochemically enhanced adsorption of aniline on activated carbon fibers, Sep. Purif. Technol. 50 (2006) 365–372. https://doi.org/10.1016/j.seppur.2005.12.011
[72] X. Xie, L. Gao, J. Sun, Thermodynamic study on aniline adsorption on chemical modified multi-walled carbon nanotubes, Colloids Surfaces A Physicochem. Eng. Asp. 308 (2007) 54–59. https://doi.org/10.1016/j.colsurfa.2007.05.028
[73] H. L. Du, L. L. Yao, J. Environ. Prot. Sci. 29 (2003) 23.
[74] S. Datta, Removal of aniline from aqueous solution in a mixed flow reactor using emulsion liquid membrane, J. Memb. Sci. 226 (2003) 185–201. https://doi.org/10.1016/j.memsci.2003.09.003
[75] R. Devulapalli, F. Jones, Separation of aniline from aqueous solutions using emulsion liquid membranes, J. Hazard. Mater. 70 (1999) 157–170. doi:10.1016/S0304-3894(99)00134-X. https://doi.org/10.1016/S0304-3894(99)00134-X
[76] C. Valderrama, J.I. Barios, A. Farran, J.L. Cortina, Evaluation of phenol aniline (Single and binary) removal from aqueous solutions onto hyper-cross-linked polymeric resin (Macronet MN200) and granular activated carbon in fixed-bed column, Water, Air, Soil Pollut. 215 (2011) 285–297. https://doi.org/10.1007/s11270-010-0478-x
[77] Y. Zhao, Z. Cai, Z. Zhou, X. Fu, Adsorption behavior of monomers and formation of conducting polymers on polyester fibers, J. Appl. Polym. Sci. 119 (2011) 662–669. https://doi.org/10.1002/app.32743
[78] G. Ersöz, S. Atalay, Kinetic modeling of the removal of aniline by low-pressure catalytic wet air oxidation over a nanostructured CoO4 /CeO2 catalyst, Ind. Eng. Chem. Res. 50 (2011) 310–315. https://doi.org/10.1021/ie1016706
[79] Y. Lee, S. Chen, H. Tu, S. Yau, L. Fan, Y. Yang, W.-P. Dow, In situ STM revelation of the adsorption and polymerization of aniline on Au(111) electrode in perchloric acid and benzenesulfonic acid, Langmuir. 26 (2010) 5576–5582. https://doi.org/10.1021/la903857x
[80] C. He, K. Huang, J. Huang, Surface modification on a hyper-cross-linked polymeric adsorbent by multiple phenolic hydroxyl groups to be used as a specific adsorbent for adsorptive removal of p-nitroaniline from aqueous solution, J. Colloid Interface Sci. 342 (2010) 462–466. https://doi.org/10.1016/j.jcis.2009.10.026
[81] X. J. Yu, C. S. Zhou, Y. X. Wang, L. J. Pang, Preparation of activated carbon from shell of carya cathayensis S. and Its adsorption behavior of aniline, Chinese J. Process Eng. 1 (2010) 65.
[82] Z.-J. Ding, L. Qi, J.-Z. Ye, Preparation and characterization of PVC/PS composite cation exchange fibers and their adsorption properties on aniline, J. Appl. Polym. Sci. 117 (2010) 1914–1923. https://doi.org/10.1002/app.32114
[83] D. Shao, J. Hu, C. Chen, G. Sheng, X. Ren, X. Wang, Polyaniline multiwalled carbon nanotube magnetic composite prepared by plasma-induced graft technique and tts application for removal of aniline and phenol, J. Phys. Chem. C. 114 (2010) 21524–21530. https://doi.org/10.1021/jp107492g
[84] R. Y. Chen, J. Zhong, C. R. Gu, C. L. Chen, Molecular dynamics simulation of adsorption of aniline by α-zirconium phosphate, J. Theor. Comput. Chem. 9 (2010) 861–873. https://doi.org/10.1142/S0219633610006043
[85] C. Song, Y. Song, Adsorption and desorption behaviors of nitrobenzene and aniline by wetland soil, in: 2010 4th Int. Conf. Bioinforma. Biomed. Eng., IEEE, 2010: pp. 1–5. https://doi.org/10.1109/icbbe.2010.5516254
[86] F. An, X. Feng, B. Gao, Adsorption property and mechanism of composite adsorbent PMAA/SiO2 for aniline, J. Hazard. Mater. 178 (2010) 499–504. https://doi.org/10.1016/j.jhazmat.2010.01.109
[87] K. Li, Y. Li, Z. Zheng, Kinetics and mechanism studies of p-nitroaniline adsorption on activated carbon fibers prepared from cotton stalk by NH4H2PO4 activation and subsequent gasification with steam, J. Hazard. Mater. 178 (2010) 553–559. https://doi.org/10.1016/j.jhazmat.2010.01.120
[88] S.S.C. X. H. Yuan, Z. R. Han, L. M. Lui, J. Hu, Adsorption of aniline and benzene on phenolic resin prepared by inverse suspension polymerization, Gaofenzi Cailiao Kexue Yu Gongcheng/Polym. Mater. Sci. Eng. 26 (2010) 36.
[89] C. Valderrama, J.I. Barios, M. Caetano, A. Farran, J.L. Cortina, Kinetic evaluation of phenol/aniline mixtures adsorption from aqueous solutions onto activated carbon and hypercrosslinked polymeric resin (MN200), React. Funct. Polym. 70 (2010) 142–150. https://doi.org/10.1016/j.reactfunctpolym.2009.11.003
[90] N. Li, X.-L. Xiong, R.-Q. Wang, Adsorption properties of aniline onto beta-cyclodextrin epichlorohydrin copolymer, in: 2009 3rd Int. Conf. Bioinforma. Biomed. Eng., IEEE, 2009: pp. 1–4. https://doi.org/10.1109/icbbe.2009.5162288
[91] H. Zheng, D. Liu, Y. Zheng, S. Liang, Z. Liu, Sorption isotherm and kinetic modeling of aniline on Cr-bentonite, J. Hazard. Mater. 167 (2009) 141–147. https://doi.org/10.1016/j.jhazmat.2008.12.093
[92] Y.Z. LI Fang-chen, DAI You-zhi, LUO Yue-ping, Adsorption behavior and mechanism of aniline on rice bran, Chinese J. Process Eng. (2009) 274.
[93] O. Gezici, A. Ayar, Stepwise frontal analysis to derive equilibrium sorption data for copper and aniline on functionalized sporopollenin, CLEAN – Soil, Air, Water. 37 (2009) 349–354. https://doi.org/10.1002/clen.200900001
[94] J. Huang, X. Wang, K. Huang, Adsorption of p-nitroaniline by phenolic hydroxyl groups modified hyper-cross-linked polymeric adsorbent and XAD-4: A comparative study, Chem. Eng. J. 155 (2009) 722–727. https://doi.org/10.1016/j.cej.2009.09.012
[95] W.C. X. H. Yuan, W. Song, L. M. Lui, J. Hu, Adsorption of aniline and benzene on phenolic resin prepared by inverse suspension polymerization, Sheng, S. S. Cao,Gaofenzi Cailiao Kexue Yu Gongcheng/Polym. Mater. Sci. Eng. (2009).
[96] F. An, X. Feng, B. Gao, Adsorption of aniline from aqueous solution using novel adsorbent PAM/SiO2, Chem. Eng. J. 151 (2009) 183–187. https://doi.org/10.1016/j.cej.2009.02.011
[97] K. Li, Z. Zheng, J. Feng, J. Zhang, X. Luo, G. Zhao, X. Huang, Adsorption of p-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk, J. Hazard. Mater. 166 (2009) 1180–1185. https://doi.org/10.1016/j.jhazmat.2008.12.035
[98] K. Li, Z. Zheng, X. Huang, G. Zhao, J. Feng, J. Zhang, Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fibre, J. Hazard. Mater. 166 (2009) 213–220. https://doi.org/10.1016/j.jhazmat.2008.11.007
[99] S.H. Jang, S. Jeong, J.R. Hahn, The preserved aromaticity of aniline molecules adsorbed on a Si(5 5 12)−2×1 surface, J. Chem. Phys. 130 (2009) 234703. https://doi.org/10.1063/1.3153920
[100] B. Li, Z. Liu, Z. Lei, Z. Huang, Catalytic dry oxidation of aniline, benzene, and pyridine adsorbed on a CuO doped activated carbon, Korean J. Chem. Eng. 26 (2009) 913–918. https://doi.org/10.1007/s11814-009-0153-3
[101] H.S. Wahab, A.D. Koutselos, A computational study on the adsorption and OH initiated photochemical and photocatalytic primary oxidation of aniline, Chem. Phys. 358 (2009) 171–176. https://doi.org/10.1016/j.chemphys.2009.01.013
[102] H. Kostelníkova, P. Praus, M. Turicová, Adsorption of phenol and aniline by original and quaternary ammonium salts-modified montmorillonite, Acta Geodyn. Geomater. 5 (2008) 83–88.
[103] X. Gu, J. Zhou, A. Zhang, P. Wang, M. Xiao, G. Liu, Feasibility study of the treatment of aniline hypersaline wastewater with a combined adsorption/bio-regeneration system, Desalination. 227 (2008) 139–149. https://doi.org/10.1016/j.desal.2007.06.021
[104] O’Brien, Curtin, O’Dwyer, Removal of aniline from waste streams using a combined adsorption and catalytic oxidation approach, Adsorpt. Sci. Technol. 26 (2008) 311–321. https://doi.org/10.1260/026361708787548800
[105] X.-Y. Liu, Y.-S. Ji, H.-X. Zhang, M.-C. Liu, Highly sensitive analysis of substituted aniline compounds in water samples by using oxidized multiwalled carbon nanotubes as an in-tube solid-phase microextraction medium, J. Chromatogr. A. 1212 (2008) 10–15. https://doi.org/10.1016/j.chroma.2008.10.034
[106] T.H. S. A. El-Safty, F. Mizukami, Cationic surfactant templates for newly developed cubic Fd3m silica mesocage structures, Int. J. Environ. Pollut. 34 (2008) 97. https://doi.org/10.1504/IJEP.2008.020785
[107] L. Zampori, P. Gallo Stampino, G. Dotelli, D. Botta, I. Natali Sora, M. Setti, Interlayer expansion of dimethyl ditallowylammonium montmorillonite as a function of 2-chloroaniline adsorption, Appl. Clay Sci. 41 (2008) 149–157. https://doi.org/10.1016/j.clay.2007.10.003
[108] E.I. Unuabonah, K.O. Adebowale, F.A. Dawodu, Equilibrium, kinetic and sorber design studies on the adsorption of aniline blue dye by sodium tetraborate-modified Kaolinite clay adsorbent, J. Hazard. Mater. 157 (2008) 397–409. https://doi.org/10.1016/j.jhazmat.2008.01.047
[109] S. Andini, R. Cioffi, F. Colangelo, F. Montagnaro, L. Santoro, Adsorption of chlorophenol, chloroaniline and methylene blue on fuel oil fly ash, J. Hazard. Mater. 157 (2008) 599–604. https://doi.org/10.1016/j.jhazmat.2008.01.025
[110] F. López-Linares, L. Carbognani, C.S. Stull, P. Pereira-Almao, Adsorption kinetics of anilines on macroporous kaolin, Energy & Fuels. 22 (2008) 2188–2194. https://doi.org/10.1021/ef800084s
[111] O.A. Anunziata, M.B. Gómez Costa, M.L. Martínez, Interaction of water and aniline adsorbed onto Na-AlMCM-41 and Na-AlSBA-15 catalysts as hosts materials, Catal. Today. 133 (2008) 897–905. https://doi.org/10.1016/j.cattod.2007.12.073
[112] J. Yao, X. Li, W. Qin, Computational design and synthesis of molecular imprinted polymers with high selectivity for removal of aniline from contaminated water, Anal. Chim. Acta. 610 (2008) 282–288. https://doi.org/10.1016/j.aca.2008.01.042
[113] E. V. Kuz’mina, L.N. Khatuntseva, S.G. Dmitrienko, Determination of aniline and phenol in waters using polyurethane foams and diffuse reflectance spectroscopy, J. Anal. Chem. 63 (2008) 34–40. https://doi.org/10.1134/S1061934808010073
[114] T.F.O. J. O’Brien, T. Curtin, Removal of organic compounds from waste streams: a combined approach, WIT Trans. Ecol. Environ. 103 (2007) 447. https://doi.org/10.2495/wrm070421
[115] C.H. Ko, C. Fan, P.N. Chiang, M.K. Wang, K.C. Lin, p-Nitrophenol, phenol and aniline sorption by organo-clays, J. Hazard. Mater. 149 (2007) 275–282. https://doi.org/10.1016/j.jhazmat.2007.03.075
[116] K. Zheng, B. Pan, Q. Zhang, W. Zhang, B. Pan, Y. Han, Q. Zhang, D. Wei, Z. Xu, Q. Zhang, Enhanced adsorption of p-nitroaniline from water by a carboxylated polymeric adsorbent, Sep. Purif. Technol. 57 (2007) 250–256. https://doi.org/10.1016/j.seppur.2007.04.017
[117] X. Chai, Y. He, D. Ying, J. Jia, T. Sun, Electrosorption-enhanced solid-phase microextraction using activated carbon fiber for determination of aniline in water, J. Chromatogr. A. 1165 (2007) 26–31. https://doi.org/10.1016/j.chroma.2007.07.048
[118] P. Podkościelny, K. László, Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions, Appl. Surf. Sci. 253 (2007) 8762–8771. https://doi.org/10.1016/j.apsusc.2007.04.057
[119] K. Zheng, B. Pan, Q. Zhang, Y. Han, W. Zhang, B. Pan, Z. Xu, Q. Zhang, W. Du, Q. Zhang, Enhanced removal of p-chloroaniline from aqueous solution by a carboxylated polymeric sorbent, J. Hazard. Mater. 143 (2007) 462–468. https://doi.org/10.1016/j.jhazmat.2006.09.052
[120] W. Zhang, Z. Xu, B. Pan, Q. Zhang, W. Du, Q. Zhang, K. Zheng, Q. Zhang, J. Chen, Adsorption enhancement of laterally interacting phenol/aniline mixtures onto nonpolar adsorbents, Chemosphere. 66 (2007) 2044–2049. https://doi.org/10.1016/j.chemosphere.2006.09.082
[121] W. Ma, Y. Fang, Experimental (SERS) and theoretical (DFT) studies on the adsorption of p-, m-, and o-nitroaniline on gold nanoparticles, J. Colloid Interface Sci. 303 (2006) 1–8. https://doi.org/10.1016/j.jcis.2006.05.001
[122] M.C.G. S. Polati, F. Gosetti, V. Gianotti, Sorption and desorption behavior of chloroanilines and chlorophenols on montmorillonite and kaolinite, J. Environ. Sci. Heal. – Part B Pestic. Food Contam. Agric. Wastes. 41 (2006) 765. https://doi.org/10.1080/03601230600805774
[123] X. Xie, L. Gao, Adsorption modification of carboxylated carbon nanotubes with aniline in aqueous solution, Chem. Lett. 35 (2006) 624–625. https://doi.org/10.1246/cl.2006.624
[124] T.-M. Wu, Y.-W. Lin, Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties, Polymer (Guildf). 47 (2006) 3576–3582. https://doi.org/10.1016/j.polymer.2006.03.060
[125] B.P. W. Zhang, J. Chen, Q. Zhang, Competitive and cooperative effect on simultaneous adsorption from aqueous solution by hypercrosslinked polymeric adsorbent, Acta Polym. Sin. 2 (2006) 213. https://doi.org/10.3724/SP.J.1105.2006.00213
[126] W. Zhang, J. Chen, B. Pan, Q. Chen, M. He, Q. Zhang, F. Wang, B. Zhang, Synergistic effect on phenol/aniline mixture adsorption on nonpolar resin adsorbents from aqueous solution, React. Funct. Polym. 66 (2006) 395–401. https://doi.org/10.1016/j.reactfunctpolym.2005.08.016
[127] H.C. A. Yildiz, A. Gür, Adsorption of aniline, phenol, and chlorophenols on pure and modified bentonite, Russ. J. Phys. Chem. A, 80 (2006) S172. https://doi.org/10.1134/S0036024406130279
[128] Q.X.Z. W. M. Zhang, J. L. Chen, B. C. Pan, J. Environ. Sci. 17 (2005) 529.
[129] C. Jianguo, L. Aimin, S. Hongyan, F. Zhenghao, L. Chao, Z. Quanxing, Equilibrium and kinetic studies on the adsorption of aniline compounds from aqueous phase onto bifunctional polymeric adsorbent with sulfonic groups, Chemosphere. 61 (2005) 502–509. https://doi.org/10.1016/j.chemosphere.2005.03.001
[130] G.R. Reddy, V. V. Mahajani, Insight into wet oxidation of aqueous aniline over a Ru/SiO2 catalyst, Ind. Eng. Chem. Res. 44 (2005) 7320–7328. https://doi.org/10.1021/ie050438d
[131] K. László, Adsorption from aqueous phenol and aniline solutions on activated carbons with different surface chemistry, Colloids Surfaces A Physicochem. Eng. Asp. 265 (2005) 32–39. https://doi.org/10.1016/j.colsurfa.2004.11.051
[132] T.J. Rockey, M. Yang, H.-L. Dai, Aniline on Ag(111): Adsorption configuration, adsorbate–substrate bond, and inter-adsorbate interactions, Surf. Sci. 589 (2005) 42–51. https://doi.org/10.1016/j.susc.2005.05.048
[133] T.F.O. J. O’Brien, T. Curtin, An investigation into the adsorption of aniline from aqueous solution using H-beta zeolites and copper-exchanged beta zeolites, Adsorpt. Sci. Tech. 23 (2005) 255. https://doi.org/10.1260/0263617054353582
[134] L.O. R. Wang, Z. Shi, R. Shi, J. Zhang, The study of adsorption of phenol and aniline on aminated-macroporous hypercrosslinked resins, Acta Polym. Sin. 3 (2005) 339.
[135] G. Liu, J. Yu, QSAR analysis of soil sorption coefficients for polar organic chemicals: Substituted anilines and phenols, Water Res. 39 (2005) 2048–2055. https://doi.org/10.1016/j.watres.2005.03.030
[136] A.A. Gürten, S. Uçan, M.A. Özler, A. Ayar, Removal of aniline from aqueous solution by PVC-CDAE ligand-exchanger, J. Hazard. Mater. 120 (2005) 81–87. https://doi.org/10.1016/j.jhazmat.2004.11.031
[137] O. Duman, E. Ayranci, Structural and ionization effects on the adsorption behaviors of some anilinic compounds from aqueous solution onto high-area carbon-cloth, J. Hazard. Mater. 120 (2005) 173–181. https://doi.org/10.1016/j.jhazmat.2004.12.030
[138] C. Causserand, P. Aimar, J.P. Cravedi, E. Singlande, Dichloroaniline retention by nanofiltration membranes, Water Res. 39 (2005) 1594–1600. https://doi.org/10.1016/j.watres.2004.12.039
[139] S. Angioi, S. Polati, M. Roz, C. Rinaudo, V. Gianotti, M.C. Gennaro, Sorption studies of chloroanilines on kaolinite and montmorillonite, Environ. Pollut. 134 (2005) 35–43. https://doi.org/10.1016/j.envpol.2004.07.018
[140] C.T. N. Kannan, Studies on the removal of aniline blue and acid violet by commercial activated carbon, Indian J. Environ. Prot. 25 (2005) 1.
[141] L. Zhu, B. Lou, K. Yang, B. Chen, Effects of ionizable organic compounds in different species on the sorption of p-nitroaniline to sediment, Water Res. 39 (2005) 281–288. https://doi.org/10.1016/j.watres.2004.11.003
[142] O’Brien, Curtin, O’Dwyer, Adsorption of aniline from aqueous solution using copper-exchanged ZSM-5 and unmodified H-ZSM-5, Adsorpt. Sci. Technol. 22 (2004) 743–754. https://doi.org/10.1260/0263617043026488
[143] K. Inumaru, Y. Inoue, S. Kakii, T. Nakano, S. Yamanaka, Molecular selective adsorption of dilute alkylphenols and alkylanilines from water by alkyl-grafted MCM-41: Tunability of the cooperative organic–inorganic function in the nanostructure, Phys. Chem. Chem. Phys. 6 (2004) 3133–3139. https://doi.org/10.1039/B403124E
[144] B. Ersoy, M.S. Çelik, Uptake of aniline and nitrobenzene from aqueous solution by organo-Zeolite, Environ. Technol. 25 (2004) 341–348. https://doi.org/10.1080/09593330409355467
[145] J. Eriksson, S. Frankki, A. Shchukarev, U. Skyllberg, Binding of 2,4,6-trinitrotoluene, aniline, and nitrobenzene to dissolved and particulate soil organic matter, Environ. Sci. Technol. 38 (2004) 3074–3080. https://doi.org/10.1021/es035015m
[146] J.F.J. C. T. Yan, Determination of aniline in silica gel sorbent by one-step in situ microwave-assisted desorption coupled to headspace solid-phase microextraction and GC–FID, Chromatographia. 59 (2004) 517. https://doi.org/10.1016/j.talanta.2004.03.053
[147] D.M. Nevskaia, E. Castillejos-Lopez, A. Guerrero-Ruiz, V. Mu-oz, Effects of the surface chemistry of carbon materials on the adsorption of phenol–aniline mixtures from water, Carbon N. Y. 42 (2004) 653–665. https://doi.org/10.1016/j.carbon.2004.01.007
[148] T. Tanaka, A. Nakajima, A. Watanabe, T. Ohno, Y. Ozaki, Surface-enhanced Raman scattering spectroscopy and density functional theory calculation studies on adsorption of o-, m-, and p-nitroaniline on silver and gold colloid, J. Mol. Struct. 661 (2003) 437–449. https://doi.org/10.1016/j.molstruc.2003.09.006
[149] G.A. Eimer, M.B. Gómez Costa, L.B. Pierella, O.A. Anunziata, Thermal and FTIR spectroscopic analysis of the interactions of aniline adsorbed on to MCM-41 mesoporous material, J. Colloid Interface Sci. 263 (2003) 400–407. https://doi.org/10.1016/S0021-9797(03)00038-9
[150] F.I. Talens-Alesson, Redox phenomena during adsorption of aniline on Fe- and Zn-bound SDS micelles, Chem. Eng. Technol. 26 (2003) 684–687. https://doi.org/10.1002/ceat.200390104
[151] J. Niu, B.E. Conway, Adsorptive and electrosorptive removal of aniline and bipyridyls from waste-waters, J. Electroanal. Chem. 536 (2002) 83–92. https://doi.org/10.1016/S0022-0728(02)01206-8
[152] T. Alam, H. Tarannum, S.R. Ali, Kamaluddin, Adsorption and oxidation of aniline and anisidine by chromium ferrocyanide, J. Colloid Interface Sci. 245 (2002) 251–256. https://doi.org/10.1006/jcis.2001.7968
[153] M. Uçan, A. Ayar, Sorption equilibria of chlorinated anilines in aqueous solution on resin-bound cobalt ion, Colloids Surfaces A Physicochem. Eng. Asp. 207 (2002) 41–47. https://doi.org/10.1016/S0927-7757(02)00134-6
[154] B.E. Conway, E. Ayranci, H. Al-Maznai, Use of quasi-3-dimensional porous electrodes for adsorption and electrocatalytic removal of impurities from waste-waters, Electrochim. Acta. 47 (2001) 705–718. https://doi.org/10.1016/S0013-4686(01)00751-4
[155] M.W. Kowalska, J.D. Ortego, A. Jezierski, Transformation of 2-(trifluoromethyl)aniline over ion-exchanged montmorillonites: formation of a dimer and cyclic trimer, Appl. Clay Sci. 18 (2001) 233–243. https://doi.org/10.1016/S0169-1317(01)00036-9
[156] E. Alonso, S. Lucas, J. Arevalo, M.J. Cocero, Supercritical extraction of aniline from polluted soil: Effect of operational variables, Chemie Ing. Tech. 73 (2001) 725–725. https://doi.org/10.1002/1522-2640(200106)73:6<725::AID-CITE7253333>3.0.CO;2-C
[157] V.N. Maistrenko, S. V. Sapel’nikova, F.K. Kudasheva, F.A. Amirkhanova, Isomer-selective carbon-paste electrodes for the determination of nitrophenol, nitroaniline, and nitrobenzoic acid by adsorption-stripping voltammetry, J. Anal. Chem. 55 (2000) 586–589. https://doi.org/10.1007/BF02757819
[158] M. Ilic, E. Koglin, A. Pohlmeier, H.D. Narres, M.J. Schwuger, Adsorption and polymerization of aniline on Cu(II)-montmorillonite: vibrational spectroscopy and ab initio calculation, Langmuir. 16 (2000) 8946–8951. https://doi.org/10.1021/la000534d
[159] L. Zhu, B. Chen, X. Shen, Sorption of phenol, p -nitrophenol, and aniline to dual-cation organobentonites from water, Environ. Sci. Technol. 34 (2000) 468–475. https://doi.org/10.1021/es990177x
[160] P. Bharathi, R.C. Deka, S. Sivasanker, R. Vetrivel, Diffusional characteristics of substituted anilines in various zeolites as predicted by molecular modeling methods, Catal. Letters. 55 (1998) 113–120. https://doi.org/10.1023/A:1019074626941
[161] R.-M. Rummel, C. Ziegler, Room temperature adsorption of aniline (C6H5NH2) on Si(100)(2×1) observed with scanning tunneling microscopy, Surf. Sci. 418 (1998) 303–313. https://doi.org/10.1016/S0039-6028(98)00726-2
[162] S. Ardizzone, H. Høiland, C. Lagioni, E. Sivieri, Pyridine and aniline adsorption from an apolar solvent: The role of the solid adsorbent, J. Electroanal. Chem. 447 (1998) 17–23. https://doi.org/10.1016/S0022-0728(98)00007-2
[163] S. Narayanan, R. Pillai Unnikrishnan, Comparison of hydrogen adsorption and aniline hydrogenation over co-precipitated Co/Al2O3 and Ni/Al2O3 catalysts, J. Chem. Soc. Faraday Trans. 93 (1997) 2009–2013. https://doi.org/10.1039/a608074j
[164] T. Bitzer, T. Alkunshalie, N.V. Richardson, An hreels investigation of the adsorption of benzoic acid and aniline on Si(100)-2 × 1, Surf. Sci. 368 (1996) 202–207. https://doi.org/10.1016/S0039-6028(97)80025-8
[165] V.G. Gaikar, T.K. Mandal, R.G. Kulkarni, Adsorptive separations using zeolites: Separation of substituted anilines, Sep. Sci. Technol. 31 (1996) 259–270. https://doi.org/10.1080/01496399608000694
[166] F. Fiçicioğlu, S. Kuliyev, F. Kadirgan, Electrochemical studies of the adsorption of aniline on a smooth polycrystalline platinum electrode, J. Electroanal. Chem. 408 (1996) 231–236. https://doi.org/10.1016/0022-0728(95)04476-0
[167] S.X. Huang, D.A. Fischer, J.L. Gland, Aniline adsorption, hydrogenation, and hydrogenolysis on the Ni(100) surface, J. Phys. Chem. 100 (1996) 10223–10234. https://doi.org/10.1021/jp951868s
[168] R.J.F. N. Gnanapragasam, B. A. G. Lewis, Microstructural changes in sand-bentonite soils when exposed to aniline, J. Geotechnol. Engg. – ASCE. 121 (1995) 119. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:2(119)
[169] P. Fox, Effects of molecular oxygen and pH on the adsorption of aniline to activated carbon, in: Pinisetti, Kamalesh, National Conf. Environ. Eng., 1994: p. 617.
[170] U. Schmiemann, Z. Jusys, H. Baltruschat, The electrochemical stability of model inhibitors: A dems study on adsorbed benzene, aniline and pyridine on mono- and polycrystalline Pt, Rh and Pd electrodes, Electrochim. Acta. 39 (1994) 561–576. https://doi.org/10.1016/0013-4686(94)80102-9
[171] O. P. Homenauth, M. B. McBride , Adsorption of aniline on layer silicate clays and an organic soil, Soil Sci. Soc. Am. J. 58 (1994) 347. https://doi.org/10.2136/sssaj1994.03615995005800020014x
[172] D.L.S. Peng-Chu Zhang, Kinetics of phenol and aniline adsorption and desorption, Soil Sci. Soc. Am. J. 57 (1993) 340. https://doi.org/10.2136/sssaj1993.03615995005700020009x
[173] F.R. Chen, J.J. Fripiat, Formation of radical ion pairs in aniline adsorption on zeolites, J. Phys. Chem. 96 (1992) 819–823. https://doi.org/10.1021/j100181a054
[174] L. Werner, F. Marlow, W. Hill, U. Retter, Optical second harmonic generation at Hg electrodes. the adsorption of aniline, Chem. Phys. Lett. 194 (1992) 39–44. https://doi.org/10.1016/0009-2614(92)85739-W
[175] M.K.N. Yenkie, G.S. Natarajan, Adsorption equilibrium studies of some aqueous aromatic pollutants on granular activated carbon samples, Sep. Sci. Technol. 26 (1991) 661–674. https://doi.org/10.1080/01496399108049907
[176] A.B.E. C. J. Murphy, G. C. Lisensky, L. K. Leung, G. R. Kowach, Photoluminescence-based correlation of semiconductor electric field thickness with adsorbate Hammett substituent constants. Adsorption of aniline derivatives onto cadmium selenide, J. Am. Chem. Soc. 112 (1990) 8344. https://doi.org/10.1021/ja00179a019
[177] C.N. Van Huong, Adsorption of aniline on a polycrystalline gold electrode: Determination of thermodynamic parameters and electron reflectance investigation, J. Electroanal. Chem. Interfacial Electrochem. 264 (1989) 247–258. https://doi.org/10.1016/0022-0728(89)80160-3
[178] R. Holze, Raman spectroscopic investigation of aniline: adsorption and polymerization, J. Electroanal. Chem. Interfacial Electrochem. 224 (1987) 253–260. https://doi.org/10.1016/0022-0728(87)85096-9
[179] H. Shindo, C. Nishihara, Raman spectra of aniline adsorbed on an Ag electrode in acidic solutions, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 84 (1988) 433.
[180] N.E. Zoulis, C.E. Efstathiou, Voltammetric determination of N-alkylated anilines by adsorption/extraction at a carbon-paste electrode, Anal. Chim. Acta. 204 (1988) 201–211. https://doi.org/10.1016/S0003-2670(00)86359-X
[181] R. Holze, Potential- and pH-dependent adsorption of aniline on silver as evidenced with surface enhanced Raman spectroscopy, Electrochim. Acta. 32 (1987) 1527–1532. https://doi.org/10.1016/0013-4686(87)85097-1
[182] J. Gorse, M.F. Burke, G.K. Vemulapalli, Isotherm studies of benzene and aniline on chemically modified silica surfaces, Langmuir. 3 (1987) 179–183. https://doi.org/10.1021/la00074a006
[183] L.I.D. M. I. Urbakh, Renorm-group approach to the calculation of the effective dielectric constant of two-dimensional inhomogeneous systems, Sov. Electrochem. 20 (1984) 962.
[184] V. Amicarelli, G. Baldassarre, V. Balice, L. Liberti, Thermoanalytical study of activated carbon regeneration part IV. adsorption equilibria for phenol, aniline and their nitro-derivatives on granular activated carbon, Thermochim. Acta. 36 (1980) 107–111. https://doi.org/10.1016/0040-6031(80)87001-8
[185] M.A. El-Dib, O.A. Aly, Removal of phenylamide pesticides from drinking waters—II. Adsorption on powdered carbon, Water Res. 11 (1977) 617–620. https://doi.org/10.1016/0043-1354(77)90095-1
[186] M.A. El-Dib, O.A. Aly, Persistence of some phenylamide pesticides in the aquatic environment—II. Adsorption on clay minerals, Water Res. 10 (1976) 1051–1053. https://doi.org/10.1016/0043-1354(76)90034-8
[187] P.C. C. Defosse, Preliminary ESCA study of aniline adsorption on HY zeolites heated at various temperatures, React. Kinet. Catal. Lett. 3 (1975) 161. https://doi.org/10.1007/BF02187509
[188] G.C. Barker, D. McKeown, Kinetics of aniline adsorption-desorption on mercury, J. Electroanal. Chem. Interfacial Electrochem. 59 (1975) 295–302. https://doi.org/10.1016/S0022-0728(75)80184-7
[189] T. Furukawa, Adsorption and oxidation of benzidine and aniline by montmorillonite and hectorite, Clays Clay Miner. 21 (1973) 279–288. https://doi.org/10.1346/CCMN.1973.0210503
[190] M. Tanaka, Infrared study of adsorbed state of aniline on alumina and HCl-treated alumina, J. Catal. 25 (1972) 111–117. https://doi.org/10.1016/0021-9517(72)90207-2
[191] L.R. Snyder, Adsorption from solution. III. derivatives of pyridine aniline and pyrrole on alumina, J. Phys. Chem. 67 (1963) 2344–2353. https://doi.org/10.1021/j100805a021