Advanced Supercapacitors Using Carbon Nanotubes

$15.95

Advanced Supercapacitors Using Carbon Nanotubes

Hai M. Duong, Hanlin Cheng, Daniel Jewell

This chapter provides a review of supercapacitors that employ carbon nanotubes (CNT) as electrode materials. We begin with a brief introduction to supercapacitors including their working principles, functional components and key characteristics. We then examine the application of carbon nanotubes in the field of supercapacitors, including discussion on CNTs with zero (0D), one (1D), two (2D) and three-dimensional (3D) structures, and their influence on the electrochemical performance of supercapacitors. Finally, we provide an outlook for the future development and use of carbon nanotubes in supercapacitor applications.

Keywords
Electrochemical Energy Storage, Supercapacitors, Carbon Nanotubes, Carbon Nanotube Composites, Multi-dimensional Structures

Published online 3/16/2017, 20 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Hai M. Duong, Hanlin Cheng, Daniel Jewell, ‘Advanced Supercapacitors Using Carbon Nanotubes’, Materials Research Foundations, Vol. 12, pp 207-228, 2017

DOI: https://dx.doi.org/10.21741/9781945291272-9

The article was published as article 9 of the book Recent Advances in Energy Storage Materials and Devices

References
[1] A .G. Pandolfo, A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources. 157 (2006) 11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065
[2] J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources. 158 (2006) 765–772. https://doi.org/10.1016/j.jpowsour.2005.09.008
[3] J. Chmiola, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science. 313 (2006) 1760–1763. https://doi.org/10.1126/science.1132195
[4] P. Wu, J. Huang, V. Meunier, B. G. Sumpter, R. Qiao, Complex capacitance scaling in ionic liquids-filled nanopores, ACS Nano. 5 (2011) 9044–9051. https://doi.org/10.1021/nn203260w
[5] J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, D. Zhao, A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors, Adv. Funct. Mater. 23 (2013) 2322–2328. https://doi.org/10.1002/adfm.201202764
[6] P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo, V. Turq, et al., On-chip and freestanding elastic carbon films for micro-supercapacitors, Science. 351 (2016) 691–695. https://doi.org/10.1126/science.aad3345
[7] J. Xu, Q. Gao, Y. Zhang, Y. Tan, W. Tian, L. Zhu, et al., Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials., Sci. Rep. 4 (2014) 5545. https://doi.org/10.1038/srep05545
[8] Y. Lv, L. Gan, M. Liu, W. Xiong, Z. Xu, D. Zhu, et al., A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes, J. Power Sources. 209 (2012) 152–157. https://doi.org/10.1016/j.jpowsour.2012.02.089
[9] H. J. Liu, X. M. Wang, W. J. Cui, Y. Q. Dou, D. Y. Zhao, Y. Y. Xia, Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells, J. Mater. Chem. 20 (2010) 4223. https://doi.org/10.1039/b925776d
[10] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotechnol. 5 (2010) 651–654. https://doi.org/10.1038/nnano.2010.162
[11] B. Kay, H. An, W. S. Kim, Y. S. Park, J. Moon, D. J. Bae, et al., Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes, Adv. Funct. Mater. 11 (2001) 387–392. https://doi.org/10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
[12] M. D. Stoller, S. Park, Z. Yanwu, J. An, R. S. Ruoff, Graphene-Based ultracapacitors, Nano Lett. 8 (2008) 3498–3502. https://doi.org/10.1021/nl802558y
[13] Y. Gogotsi, P. Simon, True Performance Metrics in Electrochemical Energy Storage, Science. 334 (2011) 917–918. https://doi.org/10.1126/science.1213003
[14] A. González, E. Goikolea, J. Andoni, R. Mysyk, Review on supercapacitors : Technologies and materials, 58 (2016) 1189–1206.
[15] P. W. Ruch, R. Kötz, A. Wokaun, Electrochemical characterization of single-walled carbon nanotubes for electrochemical double layer capacitors using non-aqueous electrolyte, Electrochim. Acta. 54 (2009) 4451–4458. https://doi.org/10.1016/j.electacta.2009.03.022
[16] C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70 (1997) 1480. https://doi.org/10.1063/1.118568
[17] C. G. Liu, M. Liu, F. Li, H. M. Cheng, Frequency response characteristic of single-walled carbon nanotubes as supercapacitor electrode material, Appl. Phys. Lett. 92 (2008) 67–70. https://doi.org/10.1063/1.2907501
[18] Z. Jiang, A. Al-Zubaidi, S. Kawasaki, Unusual increase in the electric double-layer capacitance with charge–discharge cycles of nitrogen doped single-walled carbon nanotubes, Mater. Express. 4 (2014) 331–336. https://doi.org/10.1166/mex.2014.1174
[19] M. Zhang, K. R. Atkinson, R. H. Baughman, Multifunctional carbon nanotube yarns by downsizing an ancient technology., Science. 306 (2004) 1358–1361. https://doi.org/10.1126/science.1104276
[20] B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, et al., Macroscopic fibers and ribbons of oriented carbon nanotubes., Science. 290 (2000) 1331–1334. https://doi.org/10.1126/science.290.5495.1331
[21] Y. L. Li, I. A. Kinloch, A.H. Windle, Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis, Science. 304 (2004) 276–278. https://doi.org/10.1126/science.1094982
[22] G. Sun, J. Zhou, F. Yu, Y. Zhang, J. H. L. Pang, L. Zheng, Electrochemical capacitive properties of CNT fibers spun from vertically aligned CNT arrays, J. Solid State Electrochem. 16 (2012) 1775–1780. https://doi.org/10.1007/s10008-011-1606-2
[23] R. Xu, F. Guo, X. Cui, L. Zhang, K. Wang, J. Wei, High performance carbon nanotube based fiber-shaped supercapacitors using redox additives of polypyrrole and hydroquinone, J. Mater. Chem. A. 3 (2015) 22353–22360. https://doi.org/10.1039/C5TA06165B
[24] P. J. King, T. M. Higgins, S. De, N. Nicoloso, J.N. Coleman, K. E. T. Al, Percolation Effects in Supercapacitors with Thin, Transparent Carbon Nanotube Electrodes, ACS Nano. 6 (2012) 1732–1741. https://doi.org/10.1021/nn204734t
[25] M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes, Nano Lett. 9 (2009) 1872–1876. https://doi.org/10.1021/nl8038579
[26] H. Zhu, B. Wei, Direct fabrication of single-walled carbon nanotube macro-films on flexible substrates., Chem. Commun. (2007) 3042–3044. https://doi.org/10.1039/b702523h
[27] X. Li, J. Rong, B. Wei, Electrochemical Behavior of Single-walled Carbon Nanotube Stress, ACS Nano. 4 (2010) 6039–6049. https://doi.org/10.1021/nn101595y
[28] Li, Xie, Qian, Chang, Zou, Zhou, et al., Large-Scale Synthesis of Aligned Carbon Nanotubes, Science. 274 (1996) 1701–1703. https://doi.org/10.1126/science.274.5293.1701
[29] D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, et al., Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes., Nat. Mater. 5 (2006) 987–94. https://doi.org/10.1038/nmat1782
[30] S. Dörfler, I. Felhösi, T. Marek, S. Thieme, H. Althues, L. Nyikos, et al., High power supercapacitor electrodes based on vertical aligned carbon nanotubes on aluminum, J. Power Sources 227 (2013) 218–228. https://doi.org/10.1016/j.jpowsour.2012.11.068
[31] Y. Fang, F. Jiang, H. Liu, X. Wu, Y. Lu, Free-standing Ni-microfiber-supported carbon nanotube aerogel hybrid, RSC Adv. 2 (2012) 6562–6569. https://doi.org/10.1039/c2ra20271a
[32] X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, et al., Carbon Nanotube Sponges, Adv. Mater. 22 (2010) 617–621. https://doi.org/10.1002/adma.200902986
[33] Y. Wang, H. Liu, X. Sun, I. Zhitomirsky, Manganese dioxide-carbon nanotube nanocomposites for electrodes of electrochemical supercapacitors, Scr. Mater. 61 (2009) 1079–1082. https://doi.org/10.1016/j.scriptamat.2009.08.040
[34] J. Zou, J. Liu, A. S. Karakoti, A. Kumar, D. Joung, Q. Li, et al., Ultralight multiwalled carbon nanotube aerogel, ACS Nano. 4 (2010) 7293–7302. https://doi.org/10.1021/nn102246a
[35] R. R. Kohlmeyer, M. Lor, J. Deng, H. Liu, J. Chen, Preparation of stable carbon nanotube aerogels with high electrical conductivity and porosity, Carbon. 49 (2011) 2352–2361. https://doi.org/10.1016/j.carbon.2011.02.001
[36] S. M. Kwon, H. S. Kim, H. J. Jin, Multiwalled carbon nanotube cryogels with aligned and non-aligned porous structures, Polymer. 50 (2009) 2786–2792. https://doi.org/10.1016/j.polymer.2009.04.056
[37] P. Y. Chen, M.N. Hyder, D. Mackanic, N. M. D. Courchesne, J. Qi, M.T. Klug, et al., Assembly of viral hydrogels for three-dimensional conducting nanocomposites., Adv. Mater. 26 (2014) 5101–5017. https://doi.org/10.1002/adma.201400828
[38] Y. Wang, L. Yu, Y. Xia, Electrochemical Capacitance Performance of Hybrid Supercapacitors Based on Ni(OH)2∕Carbon Nanotube Composites and Activated Carbon, J. Electrochem. Soc. 153 (2006) A743. https://doi.org/10.1149/1.2171833
[39] A. D. Su, X. Zhang, A. Rinaldi, S. T. Nguyen, H. Liu, Z. Lei, et al., Hierarchical porous nickel oxide-carbon nanotubes as advanced pseudocapacitor materials for supercapacitors, Chem. Phys. Lett. 561-562 (2013) 68–73. https://doi.org/10.1016/j.cplett.2013.01.023
[40] C. Mondal, D. Ghosh, M. Ganguly, A. Kumar, A. Roy, T. Pal, Synthesis of multiwall carbon nanotube wrapped Co(OH)2 flakes : A high-performance supercapacitor, Appl. Surf. Sci. 359 (2015) 500–507. https://doi.org/10.1016/j.apsusc.2015.10.078
[41] L. Tao, L. Shengjun, Z. Bowen, W. Bei, N. Dayong, C. Zeng, et al., Supercapacitor electrode with a homogeneously Co3O4-coated multiwalled carbon nanotube for a high capacitance, Nanoscale Res. Lett. 10 (2015) 208. https://doi.org/10.1186/s11671-015-0915-2
[42] H. Zheng, J. Wang, Y. Jia, C. Ma, In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors, J. Power Sources. 216 (2012) 508–514. https://doi.org/10.1016/j.jpowsour.2012.06.047
[43] J. M. Ko, K. M. Kim, Electrochemical properties of MnO2/activated carbon nanotube composite as an electrode material for supercapacitor, Mater. Chem. Phys. 114 (2009) 837–841. https://doi.org/10.1016/j.matchemphys.2008.10.047
[44] J. Kim, K. H. Lee, L. J. Overzet, G. S. Lee, Synthesis and Electrochemical Properties of Spin-Capable Carbon Nanotube Sheet/MnO, Nano Lett. 11 (2011) 2611–2617. https://doi.org/10.1021/nl200513a
[45] C. Choi, H. J. Sim, G. M. Spinks, X. Lepró, R. H. Baughman, S. J. Kim, Elastomeric and Dynamic MnO2/CNT Core-Shell Structure Coiled Yarn Supercapacitor, Adv. Energy Mater. 6 (2016) 1–8. https://doi.org/10.1002/aenm.201502119
[46] B. Wang, X. Fang, H. Sun, S. He, J. Ren, Y. Zhang, et al., Fabricating Continuous Supercapacitor Fibers with High Performances by Integrating All Building Materials and Steps into One Process, Adv. Mater. 27 (2015) 7854–7860. https://doi.org/10.1002/adma.201503441
[47] R. R. Salunkhe, K. Jang, S. W. Lee, S. Yu, H. Ahn, Binary metal hydroxide nanorods and multi-walled carbon nanotube composites for electrochemical energy storage applications, J. Mater. Chem. 22 (2012) 21630–21635. https://doi.org/10.1039/c2jm32638h
[48] T. M. Higgins, D. McAteer, J. C. M. Coelho, B. M. Sanchez, Z. Gholamvand, G. Moriarty, et al., Effect of percolation on the capacitance of supercapacitor electrodes prepared from composites of manganese dioxide nanoplatelets and carbon nanotubes, ACS Nano. 8 (2014) 9567–9579. https://doi.org/10.1021/nn5038543
[49] H. Fang, S. Zhang, T. Jiang, R. Lin, Y. Lin, One-step synthesis of Ni/Ni(OH)2@Multiwalled carbon nanotube coaxial nanocable film for high performance supercapacitors, Electrochim. Acta. 125 (2014) 427–434. https://doi.org/10.1016/j.electacta.2014.01.128
[50] H. Cheng, K. L. P. Koh, P. Liu, T. Q. Thang, H.M. Duong, Continuous self-assembly of carbon nanotube thin films and their composites for supercapacitors, Colloids Surfaces A Physicochem. Eng. Asp. 481 (2015) 626–632. https://doi.org/10.1016/j.colsurfa.2015.06.039
[51] W. Chen, R.B. Rakhi, L. Hu, X. Xie, Y. Cui, H. N. Alshareef, High Performance Nanostructured Supercapacitors on a Sponge High Performance Nanostructured Supercapacitors on a Sponge, Nano Lett. 11 (2011) 5165–5172. https://doi.org/10.1021/nl2023433
[52] Z. Tang, C. Tang, H. Gong, A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes, Adv. Funct. Mater. 22 (2012) 1272–1278. https://doi.org/10.1002/adfm.201102796
[53] D. Zhao, Z. Yang, L. Zhang, X. Feng, Y. Zhang, Electrodeposited Manganese Oxide on Nickel Foam–Supported Carbon Nanotubes for Electrode of Supercapacitors, Electrochem. Solid-State Lett. 14 (2011) A93. https://doi.org/10.1149/1.3562927
[54] P. Li, Y. Yang, E. Shi, Q. Shen, Y. Shang, S. Wu, et al., Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode, ACS Appl. Mater. Interfaces. 6 (2014) 5228–5234. https://doi.org/10.1021/am500579c
[55] M. B. Bryning, D. E. Milkie, M. F. Islam, L. A. Hough, J. M. Kikkawa, A. G. Yodh, Carbon Nanotube Aerogels, Adv. Mater. 19 (2007) 661–664. https://doi.org/10.1002/adma.200601748
[56] H. Cheng, H. M. Duong, Three dimensional carbon nanotube/nickel hydroxide gels for advanced supercapacitors, RSC Adv. 5 (2015) 30260–30267. https://doi.org/10.1039/C5RA01847A
[57] H. Cheng, H. M. Duong, D. Jewell, Three dimensional manganese oxide on carbon nanotube hydrogels for asymmetric supercapacitors, RSC Adv. 6 (2016) 36954–36960. https://doi.org/10.1039/C6RA02858F
[58] Y. Rangom, X. S. Tang, L. F. Nazar, Carbon Nanotube-Based Supercapacitors with Excellent ac Line Filtering and Rate Capability via Improved Interfacial Impedance, ACS Nano. 9 (2015) 7248–7255. https://doi.org/10.1021/acsnano.5b02075
[59] D. Cericola, R. Kötz, Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits, Electrochim. Acta. 72 (2012) 1–17. https://doi.org/10.1016/j.electacta.2012.03.151
[60] M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. L. Taberna, C. P. Grey, et al., Efficient storage mechanisms for building better supercapacitors, Nat. Energy. 1 (2016) 16070. https://doi.org/10.1038/nenergy.2016.70
[61] A. Vlad, N. Singh, J. Rolland, S. Melinte, P. M. Ajayan, J. F. Gohy, Hybrid supercapacitor-battery materials for fast electrochemical charge storage., Sci. Rep. 4 (2014) 4315. https://doi.org/10.1038/srep04315
[62] W. Zuo, C. Wang, Y. Li, J. Liu, Directly grown nanostructured electrodes for high volumetric energy density binder-free hybrid supercapacitors: a case study of CNTs//Li4Ti5O12., Sci. Rep. 5 (2015) 7780. https://doi.org/10.1038/srep07780
[63] L. Liu, Y. Yu, C. Yan, K. Li, Z. Zheng, Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes., Nat. Commun. 6 (2015) 7260. https://doi.org/10.1038/ncomms8260