Garnet-type Li Ion Conductive Ceramics and its Application for All-solid-state Li Batteries
M. Kotobuki
Li ion conductive ceramics are expected to be a solid electrolyte for all-solid-state Li batteries which could resolve safety issues in present Li batteries. The Li ion conductive ceramics can be in general categorized into oxide and sulfide groups. The sulfide-based ceramics show high Li ion conductivity but are not stable in air and produces toxic H2S gas. In contrary, oxide-based ceramics are stable in air. Therefore, the oxide-based ceramics are more favorable to manufacture. In this chapter, garnet-type Li ion conductive ceramics which are one of the most widely studied oxide-based Li ion conductive ceramics are reviewed in detail.
Keywords
Li Ion Conductive Ceramics, Solid Electrolyte, All-Solid-State Battery, Garnet, Lithium-Ion Battery
Published online 3/16/2017, 21 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: M. Kotobuki, ‘Garnet-type Li Ion Conductive Ceramics and its Application for All-solid-state Li Batteries’, Materials Research Foundations, Vol. 12, pp 164-184, 2017
DOI: https://dx.doi.org/10.21741/9781945291272-7
The article was published as article 7 of the book Recent Advances in Energy Storage Materials and Devices
References
[1] T. Hasegawa, K. Terabe, T. Sakamoto, M. Aono: Nanoionics switching devices: “Atomic switches”, MRS Bull. 34 (2009) 929-934. https://doi.org/10.1557/mrs2009.215
[2] Y. Sun: Lithium ion conducting membranes for lithium-air batteries, Nano Energy 2 (2013) 801-806. https://doi.org/10.1016/j.nanoen.2013.02.003
[3] K. Takada, S. Kondo: Lithium ion conductive glass and its application to solid state batteries, Ionics 4 (1998) 42-47. https://doi.org/10.1007/BF02375778
[4] P. Knauth: Inorganic solid Li ion conductors: an overview, Solid State Ionics 180 (2009) 911-916. https://doi.org/10.1016/j.ssi.2009.03.022
[5] V. Thangadurai, H. Kaack, W. Weppner: Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M=Nb, Ta), J. Am. Ceram. Soc. 86[3] (2003) 437-440. https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
[6] F. Abbattista, M. Vallino and D. Mazza: Remarks on binary system Li2O-Me2O5 (Me = Nb, Ta), Mater. Res. Bull. 22 (1987) 1019-1027. https://doi.org/10.1016/0025-5408(87)90230-3
[7] V. Thangadurai, W. Weppner: Recent progress in solid oxide and lithium ion conducting electrolytes research, Ionics 12 (2006) 81-92. https://doi.org/10.1007/s11581-006-0013-7
[8] E. J. Cussen: The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors, Chem. Commun. (2006) 412-413. https://doi.org/10.1039/B514640B
[9] M. Nakayama, M. Kotobuki, H. Munakata, M. Nogami, K. Kanamura: First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides, Phys. Chem. Chem. Phys. 14 (2012) 10008-10014. https://doi.org/10.1039/c2cp40634a
[10] M. Kotobuki, K. Kanamura: Fabrication of all-solid-state battery using Li5La3Ta2O12 ceramic electrolyte, Ceramics International 39 (2013) 6481-6487. https://doi.org/10.1016/j.ceramint.2013.01.079
[11] M. Kotobuki, M. Koishi: Preparation of Li7La3Zr2O12 solid electrolyte via a sol-gel method, Ceramics International 40 (2014) 5043-5047. https://doi.org/10.1016/j.ceramint.2013.09.009
[12] E. Rossen, J. N. Reimers, J. R. Dahn: Synthesis and electrochemistry of spinel LT-LiCoO2 Solid State Ionics 62 (1993) 53-60. https://doi.org/10.1016/0167-2738(93)90251-W
[13] R. Murugan, W. Weppner, P. Schmid-Beurmann, V. Thangadurai: Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12, Mater. Sci. Eng. B 143 (2007) 14-20. https://doi.org/10.1016/j.mseb.2007.07.009
[14] Y. X. Gao, X. P. Wang, W. G. Wang, Z. Zhuang, D. M. Zhang, Q. F. Fang: Synthesis, ionic conductivity, and chemical compatibility of garnet-like lithium ionic conductor Li5La3Bi2O12, Solid State Ionics 181 (2010) 1415-1419. https://doi.org/10.1016/j.ssi.2010.08.012
[15] R. Murugan, W. Weppner, P. Schmid-Beurmann, V. Thangadurai: Structure and lithium ion conductivity of garnet-like Li5La3Sb2O12 and Li6SrLa2Sb2O12, Mater. Res. Bull. 43 (2008) 2579-2591. https://doi.org/10.1016/j.materresbull.2007.10.035
[16] E. J. Cussen, T. W. S. Yip: A neutron diffraction study of the d0 and d10 lithium garnets Li3Nd3W2O12 and Li5La3Sb2O12, J. Solid State Chem. 180 (2007) 1832-1839. https://doi.org/10.1016/j.jssc.2007.04.007
[17] V. Thangadurai and W. Weppner: Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12, J. Solid State Chem. 179 (2006) 974-984. https://doi.org/10.1016/j.jssc.2005.12.025
[18] I. P. Roof, M. D. Smith, E. J. Cussen, H. C. zur Loye: Crystal growth of a series of lithium garnets Ln3Li5Ta2O12 (Ln=La, Pr, Nd): Structural properties, Alexandrite effect and unusual ionic conductivity, J. Solid State Chem. 182 (2009) 295-300. https://doi.org/10.1016/j.jssc.2008.10.032
[19] R. Murugan, V. Thangadurai and W. Weppner: Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5+xBaLa2Ta2O11.5+0.5x (x=0-2), Appl. Phys. A: Mater. Sci. Process.91 (2008) 615-620. https://doi.org/10.1007/s00339-008-4494-2
[20] R. Murugan, V. Thangadurai, W. Weppner: Lattice parameter and sintering temperature dependence of bulk and grain-boundary conduction of garnet-like slid Li-electrolytes, J. Electrochem. Soc. 155(1) (2008) A90-A101. https://doi.org/10.1149/1.2800764
[21] V. Thangadurai, S. Narayanan, D. Pinzaru: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Review 43 (2014) 4714-4727. https://doi.org/10.1039/c4cs00020j
[22] R. Murugan, V. Thangadurai, W. Weppner: Fast lithium ion conduction in garnet-type Li7La3Zr2O12, Angew. Chem.-Int. Ed. 46 (2007) 7778-7781. https://doi.org/10.1002/anie.200701144
[23] M. Kotobuki, H. Munakata, K. Kanamura, Y. Sato, T. Yoshida: Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode J. Electrochem. Soc. 157[10] (2010) A1076-A1079. https://doi.org/10.1149/1.3474232
[24] J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, J. Akimoto: Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12, Chem. Lett. 40 (2011) 60-62. https://doi.org/10.1246/cl.2011.60
[25] R. Murugan, W. Weppner, P. Schmid-Beurmann, V. Thangadurai: Structure and Lithium Ion Conductivity of Bismuth Containing Lithium Garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12, Mat. Sci. Eng. B-Solid 143[1-3] (2007) 14-20. https://doi.org/10.1016/j.mseb.2007.07.009
[26] Y. Ren, K. Chen, R. Chen, T, Liu, Y. Zhang, C.-W. Nan: Oxide Electrolytes for Lithium Batteries, J. Am. Ceram. Soc. 98 (2015) 3603-3623. https://doi.org/10.1111/jace.13844
[27] A. Logeat, T. Kohler, U. Eisele, B. Stiaszny, A. Harzer, M. Tovar, A. Senyshyn, H. Ehrenberg, B. Kozinsky: From Order to Disorder: The Structure of Lithium Conducting Garnets Li7-xLa3TaxZr2-xO12 (x = 0-2), Solid State Ionics 206[0] (2012) 33-38. https://doi.org/10.1016/j.ssi.2011.10.023
[28] J. Awaka, N. Kijima, H. Hayakawa, J. Akimoto: Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure, J. Solid State Chem. 182 (2009) 2046-2052. https://doi.org/10.1016/j.jssc.2009.05.020
[29] G. Larraza, A. Orera, M.L. Sanjuan: Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration, J. Mater. Chem. A 1 (2013) 11419-11428. https://doi.org/10.1039/c3ta11996c
[30] Matsui, K. Sakamoto, K. Takahashi, A. Hirano, Y. Takeda, O. Yamamoto, N. Imanishi: Phase transformation of the garnet structured lithium ion conductor: Li7La3Zr2O12, Solid State Ionics 262 (2014) 155-159. https://doi.org/10.1016/j.ssi.2013.09.027
[31] N. Bernstein, M. D. Johannes, K. Hoang: Origin of the Structural Phase Transition in Li7La3Zr2O12, Phys. Rev. Lett. 109[20] (2012) 205702. https://doi.org/10.1103/PhysRevLett.109.205702
[32] M. Kotobuki, K. Kanamura, Y. Sato, T. Yoshida: Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte, J. Power Sources 196 (2011) 7750-7754. https://doi.org/10.1016/j.jpowsour.2011.04.047
[33] C.A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, W. J. F. Weppner: Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor, Inorg. Chem. 50 (2011) 1089-1097. https://doi.org/10.1021/ic101914e
[34] A. Duvel, A. Kuhn, L. Robben, M. Wilkening, P. Heitjans: Mechanosynthesis of Solid Electrolytes: Preparation, Characterization, and Li Ion Transport Properties of Garnet-Type Al-Doped Li7La3Zr2O12 Crystallizing with Cubic Symmetry, J. Phys. Chem. C 116 (2012) 15192-15202. https://doi.org/10.1021/jp301193r
[35] R. Takano, K. Tadanaga, A. Hayashi, M. Tatsumisago: Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol-gel process, Solid State Ionics 255 (2014) 104-107. https://doi.org/10.1016/j.ssi.2013.12.006
[36] J. L. Allen, J. Wolfenstine, E. Rangasamy, J. Sakamoto: Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12, J. Power Sources 206 (2012) 315-319. https://doi.org/10.1016/j.jpowsour.2012.01.131
[37] Y. Li, C.-A. Wang, H. Xie, J. Cheng, J.B. Goodenough: High lithium ion conduction in garnet-type Li6La3ZrTaO12, Electrochem. Commun. 13 (2011) 1289-1292. https://doi.org/10.1016/j.elecom.2011.07.008
[38] H. El Shinawi, J. Janek: Stabilization of cubic lithium-stuffed garnets of type “Li7La3Zr2O12” by addition of gallium, J. Power Sources 225 (2013) 13-19. https://doi.org/10.1016/j.jpowsour.2012.09.111
[39] M.A. Howard, O. Clemens, E. Kendrick, K.S. Knight, D.C. Apperley, P.A. Anderson, P.R. Slater: Effect of Ga incorporation on the structure and Li ion conductivity of La3Zr2Li7O12, Dalton Trans. 41 (2012) 12048-12053. https://doi.org/10.1039/c2dt31318a
[40] M. Huang, A. Dumon, C.-W. Nan: Effect of Si, In and Ge Doping on High Ionic Conductivity of Li7La3Zr2O12, Electrochem. Commun. 21[0] (2012) 62-64. https://doi.org/10.1016/j.elecom.2012.04.032
[41] S. Ohta, T. Kobayashi, T. Asaoka: High Lithium Ionic Conductivity in the Garnet-Type Oxide Li7-xLa3(Zr2-x, Nbx)O12 (X = 0-2), J. Power Sources 196[6] (2011) 3342-3345. https://doi.org/10.1016/j.jpowsour.2010.11.089
[42] C. Deviannapoorani, L. Dhivya, S. Ramakumar, R. Murugan: Lithium ion Transport Properties of High Conductive Tellurium Substituted Li7La3Zr2O12 Cubic Lithium Garnets, J. Power Sources 240[0] (2013) 18-25. https://doi.org/10.1016/j.jpowsour.2013.03.166
[43] R. Murugan, S. Ramakumar, and N. Janani: High Conductive Yttrium Doped Li7La3Zr2O12 Cubic Lithium Garnet, Electrochem. Commun. 13[12] (2011) 1373-1375. https://doi.org/10.1016/j.elecom.2011.08.014
[44] S. Song, B. Yan, F. Zheng, H. M. Duong, L. Lu: Crystal Structure, Migration Mechanism and Electrochemical Performance of Cr-Stabilized Garnet, Solid State Ionics 268 (2014) 135-139. https://doi.org/10.1016/j.ssi.2014.10.009
[45] M. Matsui, K. Takahashi, K. Sakamoto, A. Hirano, Y. Takeda, O. Yamamoto, N. Imanishi: Phase stability of a granet-type lithium ion conductor Li7La3Zr2O12, Dalton Trans. 43 (2014) 1019-1024. https://doi.org/10.1039/C3DT52024B
[46] H. Xie, J. A. Alonso, Y. Li, M. T. Fern andez-Diaz, J. B. Goodenough: Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12, Chem. Mater. 23[16] (2011) 3587-3589. https://doi.org/10.1021/cm201671k
[47] Y. Kihira, S. Ohta, H. Imagawa, T. Asaoka: Effect of Simultaneous Substitution of Alkali Earth Metals and Nb in Li7La3Zr2O12 on Lithium-Ion Conductivity, ECS Electrochem. Lett. 2[7] (2013) A56-A59. https://doi.org/10.1149/2.001307eel
[48] S.-W. Baek, J.-M. Lee, Y. Kim, M.-S. Song, Y. Park: Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries, J. Power Sources 249 (2014) 197-206. https://doi.org/10.1016/j.jpowsour.2013.10.089
[49] C. Bernuy-Lopez, W. Manalastas Jr., J. M. Lopez del Amo, A. Aguadero, F. Aguesse, J. A. Kilner: Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics, Chem. Mater. 26[12] (2014) 3610-3617. https://doi.org/10.1021/cm5008069
[50] Y. Li, J.-T. Han, C.-A. Wang, H. Xie, J. B. Goodenough: Optimizing Li+ Conductivity in a Garnet Framework, J. Mater. Chem. 22[30] (2012) 15357-15361. https://doi.org/10.1039/c2jm31413d
[51] Y. Wang, W. Lai: High Ionic Conductivity Lithium Garnet Oxides of Li7-xLa3Zr2-xTaxO12 Compositions, Electrochem. Solid-State Lett. 15[5] (2012) A68-A71. https://doi.org/10.1149/2.024205esl
[52] D. Wang, G. Zhong, O. Dolotko, Y. Li, M. J. McDonald, J. Mi, R. Fu, Y. Yang: The Synergistic Effects of Al and Te on the Structure and Li+-Mobility of Garnet-Type Solid Electrolytes, J. Mater. Chem. A 2[47] (2014) 20271-20279. https://doi.org/10.1039/C4TA03591G
[53] Y. Ren, H. Deng, R. Chen, Y. Shen, Y. Lin, C.-W. Nan: Effects of Li Source on Microstructure and Ionic Conductivity of Al-Contained Li6.75La3Zr1.75Ta0.25O12 Ceramics, J. Eur. Ceram. Soc. 35[2] (2015) 561-572. https://doi.org/10.1016/j.jeurceramsoc.2014.09.007
[54] M. Huang, T. Liu, Y. Deng, H. Geng, Y. Shen, Y. Lin, C.-W. Nan: Effect of Sintering Temperature on Structure and Ionic Conductivity of Li7-xLa3Zr2O12-0.5x(x = 0.5-0.7) Ceramics, Solid State Ionics 204-205[0] (2011) 41-45. https://doi.org/10.1016/j.ssi.2011.10.003
[55] R.-J. Chen, M. Huang, W.-Z. Huang, Y. Shen, Y.-H. Lin, C.-W. Nan: Effect of Calcining and Al Doping on Structure and Conductivity of Li7La3Zr2O12, Solid State Ionics 265[0] (2014) 7-12. https://doi.org/10.1016/j.ssi.2014.07.004
[56] K. Liu, J.-T. Ma, C.-A. Wang: Excess Lithium Salt Functions More Than Compensating for Lithium Loss When Synthesizing Li6.5La3Ta0.5Zr1.5O12 in Alumina Crucible, J. Power Sources 260[0] (2014) 109-114. https://doi.org/10.1016/j.jpowsour.2014.02.065
[57] K. Tadanaga, R. Takano, T. Ichinose, S. Mori, A. Hayashi, M. Tatsumisago: Low temperature synthesis of highly ion conductive Li7La3Zr2O12-Li3BO3composites, Electrochem. Comm. 33 (2013) 51-54. https://doi.org/10.1016/j.elecom.2013.04.004
[58] R. Takano, K. Tadanaga, A. Hayashi, M. Tatsumisago: Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol-gel process, Solid State Ionics 255 (2014) 104-107. https://doi.org/10.1016/j.ssi.2013.12.006
[59] J. Wolfenstine, J. Ratchford, E. Rangasamy, J. Sakamoto, J. L. Allen: Synthesis and High Li-Ion Conductivity of Ga-Stabilized Cubic Li7La3Zr2O12, Mater. Chem. Phys. 134[2-3] (2012) 571-575. https://doi.org/10.1016/j.matchemphys.2012.03.054
[60] X.-P. W. W.-G. Wang, Y.-X. Gao, J.-F. Yang, Q.-F. Fang: Investigation on the Stability of Li5La3Ta2O12 Lithium Ionic Conductors in Humid Environment, Front. Mater. Sci. 4[2] (2010) 189-192. https://doi.org/10.1007/s11706-010-0017-0
[61] C. Galven, J.-L. Fourquet, M.-P. Crosnier-Lopez, F. Le Berre: Instability of the Lithium Garnet Li7La3Sn2O12: Li+/H+ Exchange and Structural Study, Chem. Mater. 23[7] (2011) 1892-1900. https://doi.org/10.1021/cm103595x
[62] C. Li-quan, W. Lian-zhong, C. Guang-can, W. Gang, L. Z-rong: Investigation of New Lithium Ionic Conductors Li3+xV1-xSixO4, Solid State Ionics 9-10 (1983) 149-152. https://doi.org/10.1016/0167-2738(83)90224-2
[63] A. Khorassani, A. R. West: Li+ Ion Conductivity in the System Li4SiO4-Li3VO4, J. Solid State Chem. 53[3] (1984) 369-375. https://doi.org/10.1016/0022-4596(84)90114-2
[64] S. Toda, K. Ishiguro, Y. Shimonishi, A. Hirano, Y. Takeda, O. Yamamoto, N. Imanishi: Low Temperature Cubic Garnet-Type CO2-Doped Li7La3Zr2O12, Solid State Ionics 233[0] (2013) 102-106. https://doi.org/10.1016/j.ssi.2012.12.007
[65] X. P. Wang, Y. Xia, J. Hu, Y. P. Xia, Z. Zhuang, L. J. Guo, H. Lu, T. Zhang, Q. F. Fang: Phase Transition and Conductivity Improvement of Tetragonal Fast Lithium Ionic Electrolyte Li7La3Zr2O12, Solid State Ionics 253[0] (2013) 137-142. https://doi.org/10.1016/j.ssi.2013.09.029
[66] Y. Wang, W. Lai: Phase Transition in Lithium Garnet Oxide Ionic Conductors Li7La3Zr2O12: The Role of Ta Substitution and H2O/CO2 Exposure, J. Power Sources 275[0] (2015) 612-620. https://doi.org/10.1016/j.jpowsour.2014.11.062
[67] M. Kotobuki, K. Kanamura, Y. Sato, K. Yamamot, T. Yoshida: Electrochemical properties of Li7La3Zr2O12 solid electrolyte prepared in argon atmosphere, J. Power Sources 199 (2012) 346-349. https://doi.org/10.1016/j.jpowsour.2011.10.060
[68] C.-W. Ahn, J.-J. Choi, J. Ryu, B.-D. Hahn, J.-W. Kim, W.-H. Yoon, J.-H. Choi, J.-S. Lee, D.-S. Park: Electrochemical properties of Li7La3Zr2O12-based solid state battery, J. Power Sources 272 (2014) 554-558. https://doi.org/10.1016/j.jpowsour.2014.08.110
[69] T. Matsuyama, R. Takano, K. Tadanaga, A. Hayashi, M. Tatsumisago: Fabrication of all-solid-state lithium secondary batteries with amorphous TiS4 positive electrodes and Li7La3Zr2O12 solid electrolytes, Solid State Ionics 285 (2016) 122-125. https://doi.org/10.1016/j.ssi.2015.05.025
[70] S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, T. Asaoka: All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing, J. Power Sources 238 (2013) 53-56. https://doi.org/10.1016/j.jpowsour.2013.02.073
[71] A. Aboulaich, R. Bouchet, G. Delaizir, V. Seznec, L. Tortet, M. Morcrette, P. Rozier, J.-M. Tarascon, V. Viallet, M. Dolle: A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries, Adv. Energy Mater. 1 [2] (2011) 179-183. https://doi.org/10.1002/aenm.201000050