Nanostructured Materials for Lithium Ion Battery Anodes
Yu Chen
Owing to its high energy densities in terms of both volume and mass, lithium ion battery (LIB) has quickly dominated the energy storage device market since its commercialization in 1991. As the crucial component, anode has a significant effect on the performance of a LIB. New anode materials are urged to meet the requirements of newly emerging and future LIB applications. The extensive study on nanosized materials brings great opportunity for LIB anodes to further improve their performances in terms of capacity, rate capability, and cyclic stability. In this chapter, the effect of nanosized anodes and research progress of nanostructured anodes with different dimensionalities are reviewed.
Keywords
Lithium Ion Battery, Anode, Nanomaterials
Published online 3/16/2017, 31 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Yu Chen, ‘Nanostructured Materials for Lithium Ion Battery Anodes’, Materials Research Foundations, Vol. 12, pp 94-124, 2017
DOI: https://dx.doi.org/10.21741/9781945291272-5
The article was published as article 5 of the book Recent Advances in Energy Storage Materials and Devices
References
[1] Tarascon, J. M.; Armand, M., Nature 2001, 414 (6861), 359-367. https://doi.org/10.1038/35104644
[2] Goodenough, J. B.; Kim, Y., Chem. Mater. 2009, 22 (3), 587-603. https://doi.org/10.1021/cm901452z
[3] Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Energy & Environmental Science 2011, 4 (9), 3243-3262. https://doi.org/10.1039/c1ee01598b
[4] Armand, M.; Tarascon, J. M., Nature 2008, 451 (7179), 652-657. https://doi.org/10.1038/451652a
[5] Dylla, A. G.; Henkelman, G.; Stevenson, K. J., Acc. Chem. Res. 2013, 46 (5), 1104-1112. https://doi.org/10.1021/ar300176y
[6] Obrovac, M. N.; Chevrier, V. L., Chem. Rev. 2014, 114 (23), 11444-11502. https://doi.org/10.1021/cr500207g
[7] Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R., Adv. Mater. 2010, 22 (35), E170-E192. https://doi.org/10.1002/adma.201000717
[8] Kim, T.-H.; Park, J.-S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H.-K., Advanced Energy Materials 2012, 2 (7), 860-872. https://doi.org/10.1002/aenm.201200028
[9] Bruce, P. G.; Scrosati, B.; Tarascon, J.-M., Angew. Chem. Int. Ed. 2008, 47 (16), 2930-2946. https://doi.org/10.1002/anie.200702505
[10] Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M., Nature 2000, 407, 496-499. https://doi.org/10.1038/35035045
[11] Guo, Y.-G.; Hu, J.-S.; Wan, L.-J., Adv. Mater. 2008, 20 (15), 2878-2887. https://doi.org/10.1002/adma.200800627
[12] Sim, S.; Cho, J., J. Electrochem. Soc. 2012, 159 (5), A669-A672. https://doi.org/10.1149/2.081205jes
[13] Liang, W.; Yang, H.; Fan, F.; Liu, Y.; Liu, X. H.; Huang, J. Y.; Zhu, T.; Zhang, S., ACS Nano 2013, 7 (4), 3427-33. https://doi.org/10.1021/nn400330h
[14] Zhang, W.-M.; Wu, X.-L.; Hu, J.-S.; Guo, Y.-G.; Wan, L.-J., Adv. Funct. Mater. 2008, 18 (24), 3941-3946. https://doi.org/10.1002/adfm.200801386
[15] Su, L.; Zhou, Z.; Qin, X.; Tang, Q.; Wu, D.; Shen, P., Nano Energy 2013, 2 (2), 276-282. https://doi.org/10.1016/j.nanoen.2012.09.012
[16] Narayanaswamy, A.; Xu, H.; Pradhan, N.; Peng, X., Angew. Chem. Int. Ed. 2006, 45 (32), 5361-5364. https://doi.org/10.1002/anie.200601553
[17] Liu, S.; Lu, X.; Xie, J.; Cao, G.; Zhu, T.; Zhao, X., ACS applied materials & interfaces 2013, 5 (5), 1588-1595. https://doi.org/10.1021/am302124f
[18] Wang, Z.; Wang, Z.; Liu, W.; Xiao, W.; Lou, X. W., Energy & Environmental Science 2013, 6 (1), 87-91. https://doi.org/10.1039/C2EE23330D
[19] He, M.; Yuan, L.; Hu, X.; Zhang, W.; Shu, J.; Huang, Y., Nanoscale 2013, 5 (8), 3298-3305. https://doi.org/10.1039/c3nr34133j
[20] Lou, X. W.; Li, C. M.; Archer, L. A., Adv. Mater. 2009, 21 (24), 2536-2539. https://doi.org/10.1002/adma.200803439
[21] Chen, Y.; Huang, Q. Z.; Wang, J.; Wang, Q.; Xue, J. M., J. Mater. Chem. 2011, 21 (43), 17448-17453. https://doi.org/10.1039/c1jm13572d
[22] Park, Y.; Choi, N.-S.; Park, S.; Woo, S. H.; Sim, S.; Jang, B. Y.; Oh, S. M.; Park, S.; Cho, J.; Lee, K. T., Advanced Energy Materials 2013, 3 (2), 206-212. https://doi.org/10.1002/aenm.201200389
[23] Zhang, G.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W., Adv Mater 2012, 24 (34), 4609-13. https://doi.org/10.1002/adma.201201779
[24] Xia, Y.; Xiao, Z.; Dou, X.; Huang, H.; Lu, X.; Yan, R.; Gan, Y.; Zhu, W.; Tu, J.; Zhang, W.; Tao, X., ACS Nano 2013, 7 (8), 7083-92. https://doi.org/10.1021/nn4023894
[25] Wang, Y.; Cai, L.; Xia, Y., Adv. Mater. 2005, 17 (4), 473-477. https://doi.org/10.1002/adma.200401416
[26] Yin, Y.; Erdonmez, C. K.; Cabot, A.; Hughes, S.; Alivisatos, A. P., Adv. Funct. Mater. 2006, 16 (11), 1389-1399. https://doi.org/10.1002/adfm.200600256
[27] Peng, S.; Sun, S., Angew. Chem. Int. Ed. 2007, 46 (22), 4155-4158. https://doi.org/10.1002/anie.200700677
[28] Son, Y.; Son, Y.; Choi, M.; Ko, M.; Chae, S.; Park, N.; Cho, J., Nano Lett. 2015, 15 (10), 6914-6918. https://doi.org/10.1021/acs.nanolett.5b02842
[29] Liang, J.; Han, X.; Li, Y.; Ye, K.; Hou, C.; Yu, K., New J. Chem. 2015, 39 (4), 3145-3149. https://doi.org/10.1039/C4NJ02313G
[30] Park, M.-H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M.; Cho, J., Angew. Chem. Int. Ed. 2011, 50 (41), 9647-9650. https://doi.org/10.1002/anie.201103062
[31] Teo, J. J.; Chang, Y.; Zeng, H. C., Langmuir 2006, 22 (17), 7369-7377. https://doi.org/10.1021/la060439q
[32] Liu, S.; Xing, R.; Lu, F.; Rana, R. K.; Zhu, J.-J., The Journal of Physical Chemistry C 2009, 113 (50), 21042-21047. https://doi.org/10.1021/jp907296n
[33] Yang, H. G.; Zeng, H. C., The Journal of Physical Chemistry B 2004, 108 (11), 3492-3495. https://doi.org/10.1021/jp0377782
[34] Yang, H. G.; Zeng, H. C., Angew. Chem. Int. Ed. 2004, 43 (44), 5930-5933. https://doi.org/10.1002/anie.200461129
[35] Cao, L.; Chen, D.; Caruso, R. A., Angew. Chem. Int. Ed. Engl. 2013, 52 (42), 10986-91. https://doi.org/10.1002/anie.201305819
[36] Chen, Y.; Xia, H.; Lu, L.; Xue, J., J. Mater. Chem. 2012, 22 (11), 5006-5012. https://doi.org/10.1039/c2jm15440d
[37] Sun, Y.; Feng, X.-Y.; Chen, C.-H., J. Power Sources 2011, 196 (2), 784-787. https://doi.org/10.1016/j.jpowsour.2010.07.065
[38] Chen, Y.; Song, B.; Tang, X.; Lu, L.; Xue, J., J. Mater. Chem. 2012, 22 (34), 17656-17662. https://doi.org/10.1039/c2jm32057f
[39] Fang, Y.; Gu, D.; Zou, Y.; Wu, Z.; Li, F.; Che, R.; Deng, Y.; Tu, B.; Zhao, D., Angew. Chem. Int. Ed. 2010, 49 (43), 7987-7991. https://doi.org/10.1002/anie.201002849
[40] Chen, Y.; Song, B.; Li, M.; Lu, L.; Xue, J., Adv. Funct. Mater. 2014, 24 (3), 319-326. https://doi.org/10.1002/adfm.201300872
[41] Moon, H. R.; Lim, D. W.; Suh, M. P., Chem Soc Rev 2013, 42 (4), 1807-24. https://doi.org/10.1039/C2CS35320B
[42] Xuan, W.; Zhu, C.; Liu, Y.; Cui, Y., Chem Soc Rev 2012, 41 (5), 1677-1695. https://doi.org/10.1039/C1CS15196G
[43] Zhang, W.; Liu, Y.; Lu, G.; Wang, Y.; Li, S.; Cui, C.; Wu, J.; Xu, Z.; Tian, D.; Huang, W.; DuCheneu, J. S.; Wei, W. D.; Chen, H.; Yang, Y.; Huo, F., Adv Mater 2015, 27 (18), 2923-2929. https://doi.org/10.1002/adma.201405752
[44] Wu, R.; Qian, X.; Yu, F.; Liu, H.; Zhou, K.; Wei, J.; Huang, Y., Journal of Materials Chemistry A 2013, 1 (37), 11126-11129. https://doi.org/10.1039/c3ta12621h
[45] Mai, L.; Tian, X.; Xu, X.; Chang, L.; Xu, L., Chem. Rev. 2014, 114 (23), 11828-11862. https://doi.org/10.1021/cr500177a
[46] Liu, J.; Song, K.; Zhu, C.; Chen, C. C.; van Aken, P. A.; Maier, J.; Yu, Y., ACS Nano 2014, 8 (7), 7051-7059. https://doi.org/10.1021/nn501945f
[47] Chen, Y.; Liu, L.; Xiong, J.; Yang, T.; Qin, Y.; Yan, C., Adv. Funct. Mater. 2015, 25 (43), 6701-6709. https://doi.org/10.1002/adfm.201503206
[48] Lu, Y.; Tu, J.; Xiong, Q.; Qiao, Y.; Zhang, J.; Gu, C.; Wang, X.; Mao, S. X., Chemistry – A European Journal 2012, 18 (19), 6031-6038. https://doi.org/10.1002/chem.201103724
[49] Yan, C.; Chen, G.; Zhou, X.; Sun, J.; Lv, C., Adv. Funct. Mater. 2016, 26 (9), 1428-1436. https://doi.org/10.1002/adfm.201504695
[50] Zhou, W.; Cheng, C.; Liu, J.; Tay, Y. Y.; Jiang, J.; Jia, X.; Zhang, J.; Gong, H.; Hng, H. H.; Yu, T.; Fan, H. J., Adv. Funct. Mater. 2011, 21 (13), 2439-2445. https://doi.org/10.1002/adfm.201100088
[51] Gu, X.; Chen, L.; Ju, Z. C.; Xu, H. Y.; Yang, J.; Qian, Y. T., Adv. Funct. Mater. 2013, 23 (32), 4049-4056. https://doi.org/10.1002/adfm.201203779
[52] Yu, L.; Wang, Z.; Zhang, L.; Wu, H. B.; Lou, X. W., Journal of Materials Chemistry A 2013, 1 (1), 122-127. https://doi.org/10.1039/C2TA00223J
[53] Liu, J.; Li, Y.; Huang, X.; Ding, R.; Hu, Y.; Jiang, J.; Liao, L., J. Mater. Chem. 2009, 19 (13), 1859-1864. https://doi.org/10.1039/b817036c
[54] Liao, J. Y.; Manthiram, A., Advanced Energy Materials 2014, 4 (14), n/a-n/a.
[55] Cao, F.-F.; Deng, J.-W.; Xin, S.; Ji, H.-X.; Schmidt, O. G.; Wan, L.-J.; Guo, Y.-G., Adv. Mater. 2011, 23 (38), 4415-4420. https://doi.org/10.1002/adma.201102062
[56] Geim, A. K.; Novoselov, K. S., Nature materials 2007, 6 (3), 183-191. https://doi.org/10.1038/nmat1849
[57] Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S., Nano Lett. 2009, 9 (12), 4268-4272. https://doi.org/10.1021/nl902515k
[58] Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J.; Rotenberg, E.; Schmid, A. K.; Waldmann, D.; Weber, H. B.; Seyller, T., Nature materials 2009, 8 (3), 203-207. https://doi.org/10.1038/nmat2382
[59] Wang, J.; Manga, K. K.; Bao, Q.; Loh, K. P., J. Am. Chem. Soc. 2011, 133 (23), 8888-8891. https://doi.org/10.1021/ja203725d
[60] Brodie, B. C., Philosophical Transactions of the Royal Society of London 1859, 149, 249-259. https://doi.org/10.1098/rstl.1859.0013
[61] Hummers, W. S.; Offeman, R. E., J. Am. Chem. Soc. 1958, 80 (6), 1339-1339. https://doi.org/10.1021/ja01539a017
[62] Dimiev, A. M.; Tour, J. M., ACS Nano 2014, 8 (3), 3060-3068. https://doi.org/10.1021/nn500606a
[63] Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., Chem Soc Rev 2010, 39 (1), 228-240. https://doi.org/10.1039/B917103G
[64] Valota, A. T.; Kinloch, I. A.; Novoselov, K. S.; Casiraghi, C.; Eckmann, A.; Hill, E. W.; Dryfe, R. A. W., ACS Nano 2011, 5 (11), 8809-8815. https://doi.org/10.1021/nn202878f
[65] Pan, D.; Wang, S.; Zhao, B.; Wu, M.; Zhang, H.; Wang, Y.; Jiao, Z., Chem. Mater. 2009, 21 (14), 3136-3142. https://doi.org/10.1021/cm900395k
[66] Wu, Z.-S.; Ren, W.; Xu, L.; Li, F.; Cheng, H.-M., ACS Nano 2011, 5 (7), 5463-5471. https://doi.org/10.1021/nn2006249
[67] Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y., Adv Mater 2013, 25 (35), 4932-4937. https://doi.org/10.1002/adma.201301870
[68] Xu, J.; Lin, Y.; Connell, J. W.; Dai, L., Small 2015, 11 (46), 6179-6185. https://doi.org/10.1002/smll.201501848
[69] Chen, Y.; Song, B.; Tang, X.; Lu, L.; Xue, J., Small 2014, 10 (8), 1536-1543. https://doi.org/10.1002/smll.201302879
[70] Li, N.; Zhou, G.; Li, F.; Wen, L.; Cheng, H.-M., Adv. Funct. Mater. 2013, 23 (43), 5429-5435. https://doi.org/10.1002/adfm.201300495
[71] Zhou, G.; Wang, D.-W.; Li, F.; Zhang, L.; Li, N.; Wu, Z.-S.; Wen, L.; Lu, G. Q.; Cheng, H.-M., Chem. Mater. 2010, 22 (18), 5306-5313. https://doi.org/10.1021/cm101532x
[72] Chen, Y.; Song, B.; Lu, L.; Xue, J., Nanoscale 2013, 5 (15), 6797-6803. https://doi.org/10.1039/c3nr01826a
[73] Chen, Y.; Song, B.; Chen, R. M.; Lu, L.; Xue, J., Journal of Materials Chemistry A 2014, 2 (16), 5688-5695. https://doi.org/10.1039/c3ta14745b
[74] Zhou, X.; Wan, L. J.; Guo, Y. G., Adv Mater 2013, 25 (15), 2152-2157. https://doi.org/10.1002/adma.201300071
[75] Wu, Z.-S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H.-M., ACS Nano 2010, 4 (6), 3187-3194. https://doi.org/10.1021/nn100740x
[76] Huang, X.-l.; Wang, R.-z.; Xu, D.; Wang, Z.-l.; Wang, H.-g.; Xu, J.-j.; Wu, Z.; Liu, Q.-c.; Zhang, Y.; Zhang, X.-b., Adv. Funct. Mater. 2013, 23 (35), 4345-4353. https://doi.org/10.1002/adfm.201203777
[77] Li, L.; Raji, A. R.; Tour, J. M., Adv Mater 2013, 25 (43), 6298-6302. https://doi.org/10.1002/adma.201302915
[78] Wang, H.; Cui, L.-F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H., J. Am. Chem. Soc. 2010, 132 (40), 13978-13980. https://doi.org/10.1021/ja105296a
[79] Etacheri, V.; Yourey, J. E.; Bartlett, B. M., ACS Nano 2014, 8 (2), 1491-1499. https://doi.org/10.1021/nn405534r
[80] Chang, K.; Geng, D.; Li, X.; Yang, J.; Tang, Y.; Cai, M.; Li, R.; Sun, X., Advanced Energy Materials 2013, 3 (7), 839-844. https://doi.org/10.1002/aenm.201201108
[81] Jiang, Z.; Wang, C.; Du, G.; Zhong, Y. J.; Jiang, J. Z., J. Mater. Chem. 2012, 22 (19), 9494-9496. https://doi.org/10.1039/c2jm30856h
[82] Qin, J.; He, C.; Zhao, N.; Wang, Z.; Shi, C.; Liu, E.-Z.; Li, J., ACS Nano 2014.
[83] Zhao, X.; Hayner, C. M.; Kung, M. C.; Kung, H. H., Advanced Energy Materials 2011, 1 (6), 1079-1084. https://doi.org/10.1002/aenm.201100426
[84] Chou, S.-L.; Wang, J.-Z.; Choucair, M.; Liu, H.-K.; Stride, J. A.; Dou, S.-X., Electrochem. Commun. 2010, 12 (2), 303-306. https://doi.org/10.1016/j.elecom.2009.12.024
[85] Zhang, J.; Zhang, L.; Xue, P.; Zhang, L. Y.; Zhang, X. L.; Hao, W. W.; Tian, J. H.; Shen, M.; Zheng, H. H., Journal of Materials Chemistry A 2015, 3 (15), 7810-7821. https://doi.org/10.1039/C5TA00457H
[86] Chang, J.; Huang, X.; Zhou, G.; Cui, S.; Hallac, P. B.; Jiang, J.; Hurley, P. T.; Chen, J., Adv Mater 2014, 26 (5), 758-764. https://doi.org/10.1002/adma.201302757