Rare-earth doped silica-hafnia glass ceramic for silicon solar cell efficiency enhancement

$12.50

S. BELMOKHTAR, A. BOUAJAJ, M. BRITEL, N. LOTFI, F. BELLUOMO, C. ARMELLINI, F. ENRICHI, M. FERRARI, F. ENRICHI

Abstract. The efficiency of solar cells may be improved by better exploitation of the solar radiation managing the photons coming from the solar spectrum to better fit the absorption band of the employed solar cells. This can be done by inserting in the front or rear of the solar cell an optically active layer doped with rare earth ions which acts as down-converter or up-converter. In this work we will focus on down conversion process using cooperative energy transfer between a Tb3+ ion and two Yb3+ ions. Down converting silica-hafnia planar waveguides (70%SiO2–30%HfO2) doped with different concentrations of Tb and Yb ([Tb+Yb]/[Si+Hf] = 5%, 7%, 9%) were deposited on a silica glass substrate by a sol gel route using the dip-coating method and finally treated at 1000°C. The evaluation of the transfer efficiency between Tb3+ and Yb3+ is obtained by comparing the luminescence decay of Tb with and without Yb co-doping ions. A maximum transfer efficiency of 55% was found for the highest rare earth doping concentration.

Keywords
Down Conversion, Rare Earth, Sol Gel, Transfer Efficiency

Published online 12/10/2016, 4 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: S. BELMOKHTAR, A. BOUAJAJ, M. BRITEL, N. LOTFI, F. BELLUOMO, C. ARMELLINI, F. ENRICHI, M. FERRARI, F. ENRICHI, ‘Rare-earth doped silica-hafnia glass ceramic for silicon solar cell efficiency enhancement’, Materials Research Proceedings, Vol. 1, pp 218-221, 2016
DOI: https://dx.doi.org/10.21741/9781945291197-54

The article was published as article 54 of the book Dielectric Materials and Applications

References
[1] C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Cañizo, I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency – an overview of available materials, Sol. Energy Mater. Sol. Cells 91 (2007) 238–249. https://dx.doi.org/10.1016/j.solmat.2006.09.003
[2] G. Alombert-Goget, C. Armellini, A. Chiappini, A. Chiasera, M. Ferrari, S. Berneschi, M. Brenci, S. Pelli, G.C. Righini, M. Bregoli, A. Maglione, G. Pucker, G. Speranza, Frequency converter layers based on terbium and ytterbium activated HfO2 glass–ceramics, Proc. SPIE 7598 (2010). 75980P–1/9.
[3] G. Alombert-Goget, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D.N. Rao, G.C. Righini, Tb3+/Yb3+ coactivated Silica–Hafnia glass ceramic waveguides, Opt. Mater. 33 (2010) 227–230. https://dx.doi.org/10.1016/j.optmat.2010.09.030
[4] A. M. Srivastava, D. A. Doughty, W. W. Beers, “Photon Cascade Luminescence of Pr3+ in LaMgB5O10,” J. Electrochem. Soc. 143 (12), 4113-4116 (1996). https://dx.doi.org/10.1149/1.1837346
[5] W. Strek, P. Deren, A. Bednarkiewicz, “Cooperative processes in KYb(WO4)2 crystal doped with Eu3+ and Tb3+ions,” J. Lumin. 87-89, 999-1001 (2000). https://dx.doi.org/10.1016/S0022-2313(99)00505-0
[6] B.S Richards, “Luminescent layers for enhanced silicon solar cell performance: Down conversion,” Solar Energy Material & Solar Cells 90, 1189-1207 (2006). https://dx.doi.org/10.1016/j.solmat.2005.07.001
[7] D. A. Neumayer and E. Cartier, “Materials characterization of Zro2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,“ J. Appl. Phys. 90, 1801-1808 (2001). https://dx.doi.org/10.1063/1.1382851
[8] S. Ronchin, A. Chiasera, M. Montagna, R. Rolli, C. Tosello, S. Pelli, G.C. Righini, R. R. Goncalves, S.J.L. Ribeiro, C.S. De Bernardi, F. Pozzi, C. Duverger, R. Belli, M. Ferrari, Erbium-activated silica–titania planar waveguides prepared by rf-sputtering, SPIE 4282 (2001) 31. https://dx.doi.org/10.1117/12.424788
[9] A. Bouajaj, S. Belmokhtar, M.R. Britel, C. Armellini, B. Boulard, F. Belluomo, A. Di Stefano, S. Polizzi, A. Lukowiak, M. Ferrari, F. Enrichi. Tb3+/Yb3+ codoped silica–hafnia glass and glass–ceramic waveguides to improve the efficiency of photovoltaic solar cells. Optical Materials 52 (2016) 62–68. https://dx.doi.org/10.1016/j.optmat.2015.12.013
[10] S. Belmokhtar, A. Bouajaj, M. Britel, S. Normani, C. Armellini, B. Boulard, F. Enrichi, F. Belluomo, A. Di Stefano, M. Ferrari. Energy transfer from Tb3+ to Yb3+ in silica hafinia glass ceramic for photovoltaic applications. J. Mater. Environ. Sci. 7 (2) (2016) 515-518. ISSN : 2028-2508 CODEN: JMESCN.
[11] P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B 71, 014119-1 – 014119-11 (2005)