Comparison of Submerged Arc Welding Process Modification Influence on Thermal Strain by in-situ Neutron Diffraction

Comparison of Submerged Arc Welding Process Modification Influence on Thermal Strain by in-situ Neutron Diffraction

R. Sharma, U. Reisgen, M. Hofmann

download PDF

Abstract. In this paper the application of neutron diffraction for measuring the thermal strain field in the vicinity of the weld pool during submerged arc welding is described. The aim of the research was to determine the influence of a welding process modification on the thermal strain within a sample rod. The welding experiment was carried out on the instrument STRESS-SPEC at the MLZ FRMII facility in Garching, Germany. Submerged arc welding equipment with additional cold wire feeding was adapted to the diffractometer and thereon single layer bead-on-plate welds were carried out. Sample rods made of the nickel base alloy 625 were used. The measured strain values are presented and discussed with respect to the resulting weld bead geometry and the thermal profile within the sample.

Keywords
Neutron Diffraction, Strain Analysis, in-situ Experiment, Submerged Arc Welding, Cold Wire

Published online 12/22/2016, 6 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: R. Sharma, U. Reisgen, M. Hofmann, ‘Comparison of Submerged Arc Welding Process Modification Influence on Thermal Strain by in-situ Neutron Diffraction’, Materials Research Proceedings, Vol. 2, pp 533-538, 2017

DOI: https://dx.doi.org/10.21741/9781945291173-90

The article was published as article 90 of the book Residual Stresses 2016

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] W. Dahl, U. Dilthey in D. Aurich, K.H. Kloos (Eds.):“Eigenspannungen und Verzug durch Wärmewirkung“, S. 175-201, Wiley-VCH Weinheim, 1999
[2] M. Shibahara, K. Ikushima and S. Itoh STWJ 2012 Vol 17 No 6 pp. 511-517 doi 10.1179/1362171812Y.0000000027
[3] U. Reisgen, C. Geffers, R. Sharma, J. v. d. Heydt, MSF Vols. 768-769 (2014) pp 644-651, doi:10.4028/www.scientific.net/MSF.768-769.644. https://dx.doi.org/10.4028/www.scientific.net/MSF.768-769.644
[4] U. Reisgen, R. Sharma, J. v. d. Heydt, AMR Vol. 996 (2014) pp 424-430, doi:10.4028/www.scientific.net/AMR.996.424. https://dx.doi.org/10.4028/www.scientific.net/AMR.996.424
[5] U. Reisgen, U. Dilthey, I. Aretov, . in T. Böllinghaus, H. Herold, C. E. Cross, J. C. Lippold (Eds.): Hot Cracking Phenomena in Welds, Pt. 2. Berlin, Heidelberg, Springer , 2008 pp. 215- 240
[6] U. Reisgen, K. Willms, S. Jochindke, IIW-DOC: XII-2207-15, 2015
[7] R. Sharma, IIW-Doc II-1847-13 (II-C-458-13), 2013
[8] L. Karlsson, H. Arcini, P Dyberg, S. Rigdal, M. Thuvander, Proc. Stainless Steel World Conference Maastricht, NL, 2003, pp. 283–294
[9] Heinz Maier-Leibnitz Zentrum. STRESS-SPEC: Materials science diffractometer. Journal of large-scale research facilities, 1, A6., 2015, https://dx.doi.org/10.17815/jlsrf-1-25.
[10] U. Reisgen, A. Schiebahn, O. Mokrov, O. Lisnyi, R. Sharma, CWA Journal 11, 2015, 6, pp. 90 – 94
[11] M.R. Daymond, B. Clausen, Journal of Applied Physics 82, No. 4, pp. 1554 – 1562, 1997 https://dx.doi.org/10.1063/1.365956.
[12] Radaj, D.: Heat effects of welding, Springer Berlin, 1992. https://dx.doi.org/10.1007/978-3-642-48640-1