Residual Stress Measurements of Alumina-Zirconia Ceramics by Time-of-Flight Neutron Diffraction
K. Fan, J. Ruiz-Hervias, J. Gurauskis, C. Baudin
download PDFAbstract. Neutron strain scanning and Rietveld analysis were used to study the residual stresses in Al2O3/Y-TZP ceramic composites fabricated by different green processing techniques (a novel tape casting and conventional slip casting) and with different zirconia content. The results show that the residual stresses in zirconia particulates are tensile and the ones in alumina matrix are compressive, with almost flat through-thickness residual stress profiles in all bulk samples. The residual stresses for both phases were mainly dependent on the zirconia content, irrespective of the measurement direction and the fabrication process.
Keywords
Ceramic Composites, Residual Stress, Neutron Diffraction, Tape Casting
Published online 12/22/2016, 6 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: K. Fan, J. Ruiz-Hervias, J. Gurauskis, C. Baudin, ‘Residual Stress Measurements of Alumina-Zirconia Ceramics by Time-of-Flight Neutron Diffraction’, Materials Research Proceedings, Vol. 2, pp 157-162, 2017
DOI: https://dx.doi.org/10.21741/9781945291173-27
The article was published as article 27 of the book Residual Stresses 2016
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] K. Kageyama, Y. Harada, H. Kato, Preparation and mechanical properties of alumina-zirconia composites with agglomerated structures using pre-sintered powder, Mater. Trans., JIM. 44 (2003) 1571-1576.
[2] F. Gutierrez-Mora, D. Singh, N. Chen, et al., Fracture of composite alumina/yttria-stabilized zirconia joints, J. Eur. Ceram. Soc. 26 (2006) 961-965. https://dx.doi.org/10.1016/j.jeurceramsoc.2004.12.035
[3] W. Tuan, R. Chen, T. Wang, et al., Mechanical properties of Al2O3/ZrO2 composites, J. Eur. Ceram. Soc. 22 (2002) 2827-2833. https://dx.doi.org/10.1016/S0955-2219(02)00043-2
[4] A. Nevarez-Rascon, A. Aguilar-Elguezabal, E. Orrantia, et al., On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content, Int. J. Refract. Met. Hard Mater. 27 (2009) 962-970. https://dx.doi.org/10.1016/j.ijrmhm.2009.06.001
[5] K.B. Alexander, P.F. Becher, X.L. Wang, et al., Internal Stresses and the Martensite Start Temperature in Alumina‐Zirconia Composites: Effects of Composition and Microstructure, J. Am. Ceram. Soc. 78 (1995) 291-296. https://dx.doi.org/10.1111/j.1151-2916.1995.tb08799.x
[6] C. Baudín, J. Gurauskis, A.J. Sánchez-Herencia, et al., Indentation Damage and Residual Stress Field in Alumina-Y2O3-Stabilized Zirconia Composites, J. Am. Ceram. Soc. 92 (2009) 152-160. https://dx.doi.org/10.1111/j.1551-2916.2008.02813.x
[7] X.L. Wang, C.R. Hubbard, K.B. Alexander, et al., Neutron Diffraction Measurements of the Residual Stresses in Al2O3-ZrO2 (CeO2) Ceramic Composites, J. Am. Ceram. Soc. 77 (1994) 1569-1575. https://dx.doi.org/10.1111/j.1151-2916.1994.tb09758.x
[8] T. Adachi, T. Sekino, T. Nakayama, et al., Measurement of microscopic stress distribution of multilayered composite by X-ray stress analysis, Mater. Lett. 57 (2003) 3057-3062. https://dx.doi.org/10.1016/S0167-577X(02)01436-2
[9] G. De Portu, L. Micele, Y. Sekiguchi, et al., Measurement of residual stress distributions in Al2O3/3Y-TZP multilayered composites by fluorescence and Raman microprobe piezo-spectroscopy, Acta Mater. 53 (2005) 1511-1520. https://dx.doi.org/10.1016/j.actamat.2004.12.003
[10] J. Ruiz-Hervías, G. Bruno, J. Gurauskis, et al., Neutron diffraction investigation for possible anisotropy within monolithic Al2O3/Y-TZP composites fabricated by stacking together cast tapes, Scripta Mater. 54 (2006) 1133-1137. https://dx.doi.org/10.1016/j.scriptamat.2005.11.061
[11] J. Gurauskis, A. Sanchez-Herencia, C. Baudin, Joining green ceramic tapes made from water-based slurries by applying low pressures at ambient temperature, J. Eur. Ceram. Soc. 25 (2005) 3403-3411. https://dx.doi.org/10.1016/j.jeurceramsoc.2004.09.008
[12] J. Gurauskis, A.J. Sánchez-Herencia, C. Baudín, Al2O3/Y-TZP and Y-TZP materials fabricated by stacking layers obtained by aqueous tape casting, J. Eur. Ceram. Soc. 26 (2006) 1489-1496. https://dx.doi.org/10.1016/j.jeurceramsoc.2005.02.013
[13] A. Tsetsekou, C. Agrafiotis, A. Milias, Optimization of the rheological properties of alumina slurries for ceramic processing applications Part I: Slip-casting, J. Eur. Ceram. Soc. 21 (2001) 363-373. https://dx.doi.org/10.1016/S0955-2219(00)00185-0
[14] A. Coelho, TOPAS-Academic V5, Coelho Software, Brisbane, Australia. https://www.topas-academic.net/ (2012).
[15] J. Lewis, D. Schwarzenbach, H. Flack, Electric field gradients and charge density in corundum, α-Al2O3, Acta Crystallogr. Sec. A. 38 (1982) 733-739. https://dx.doi.org/10.1107/S0567739482001478
[16] M. Yashima, S. Sasaki, M. Kakihana, et al., Oxygen-induced structural change of the tetragonal phase around the tetragonal–cubic phase boundary in ZrO2–YO1.5 solid solutions, Acta Crystallogr., Sect. B: Struct. Sci. 50 (1994) 663-672. https://dx.doi.org/10.1107/S0108768194006257
[17] W. Pabst, G. Ticha, E. Gregorova, Effective elastic properties of alumina-zirconia composite ceramics-Part 3. Calculation of elastic moduli of polycrystalline alumina and zirconia from monocrystal data, Ceramics- Silikaty. 48 (2004) 41-48.
[18] T. D, Thermal expansion data. III. Sesquioxides, M2O3 with the corundum.and the A-, B- and C-M2O3 structures, Br. Ceram. Trans. J. 83 (1984) 92–98.
[19] H. Schubert, Anisotropic Thermal Expansion Coefficients of Y2O3-Stabilized Tetragonal Zirconia, J. Am. Ceram. Soc. 69 (1986) 270-271. https://dx.doi.org/10.1111/j.1151-2916.1986.tb07424.x
[20] M. Taya, S. Hayashi, A.S. Kobayashi, et al., Toughening of a Particulate-Reinforced Ceramic-Matrix Composite by Thermal Residual Stress, J. Am. Ceram. Soc. 73 (1990) 1382-1391. https://dx.doi.org/10.1111/j.1151-2916.1990.tb05209.x
[21] V. Hauk, Structural and residual stress analysis by nondestructive methods: Evaluation-Application-Assessment, Elsevier1997.