Structural characterization of beryllium and indium oxide powders
R. Yuvakkumar, V. Milton, G. Ravi, S.I. Hong
The effect of processing parameters such as reaction time, incubation and calcination temperature on the structural properties of beryllium and indium oxide powders employing a green synthesis technique has been investigated. A possible mechanism to understand the formation of metal-ellagate complex formation has been explored.
Keywords
Beryllium Oxide, Indium oxide, Green Synthesis, Structural Properties, Metal-Ellagate, Clacination
Published online 1/1/2017, 16 pages
DOI: https://dx.doi.org/10.21741/9781945291135-9
Part of Contemporary Dielectric Materials
References
[1] P. J. Anderson and R. F. Horlock, Calcination of microporous BeO powders, Trans. Faraday Soc. 63 (1967) 2316-2323. https://dx.doi.org/10.1039/tf9676302316
[2] V.S. Kiiko, I.A. Dmitriev, Y.N. Makurin, A.A. Sofronov, A.L. Ivanovskii, Synthesis and Application of Transparent Beryllium Ceramics, Glass Phys. Chem 30 (2004) 109-111. https://dx.doi.org/10.1023/B:GPAC.0000016407.00973.8c
[3] T.J. Oatts, C.E. Hicks, A.R. Adams, M.J. Brisson, L.D. Youmans-McDonald, M.D. Hoover, K. Ashley, Preparation, certification and interlaboratory analysis of workplace air filters spiked with high-fired beryllium oxide, J. Environ. Monit. 14 (2012) 391-401. https://dx.doi.org/10.1039/C1EM10688K
[4] M.D. Petrenko, I.N. Ogorodnikov, V. Yu. Ivanov, Thermoluminescence and low-temperature luminescence of beryllium oxide, Radiat. Meas. doi:10.1016/j.radmeas.2015.12.025. https://dx.doi.org/10.1016/j.radmeas.2015.12.025
[5] S. Dawahra, K. Khattab, G. Saba, Investigation of BeO as a reflector for the low power research reactor, Prog. Nucl. Energy 81 (2015) 1-5. https://dx.doi.org/10.1016/j.pnucene.2014.12.001
[6] A. Fathalian, F. Kanjouri, J. Jalilian, BeO nanotube bundle as a gas sensor, Superlattices Microstruct. 60 (2013) 291-299. https://dx.doi.org/10.1016/j.spmi.2013.04.028
[7] Fathalian, R. Moradian, M. Shahrokhi, Optical properties of BeO nanotubes: Ab initio study, Solid State Commun. 156 (2013) 1–7. https://dx.doi.org/10.1016/j.ssc.2012.11.017
[8] J. Baima, A. Erba, M. Rerat, R. Orlando, R. Dovesi, Beryllium Oxide Nanotubes and their Connection to the Flat Monolayer, J. Phys. Chem. C, 117 (2013) 12864–12872. https://dx.doi.org/10.1021/jp402340z
[9] E.C. Anota, G.H. Cocoletzi, Electronic properties of functionalized (5,5) beryllium oxide nanotubes, J. Mol. Graphics Modell. 42 (2013) 115-119. https://dx.doi.org/10.1016/j.jmgm.2013.03.007
[10] E.O. Wrasse, R.J. Baierle, First principles study of native defects in BeO, Physics Procedia 28 (2012) 79-83. https://dx.doi.org/10.1016/j.phpro.2012.03.675
[11] W. Wu, P. Lu, Z. Zhang, W. Guo, Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons, ACS Appl. Mater. Interfaces, 3 (2011) 4787–4795. https://dx.doi.org/10.1021/am201271j
[12] X. Wang, R. Wang, C. Peng, T. Li, B. Liu, Growth of BeO Nanograins Synthesized by Polyacrylamide Gel Route, J. Mater. Sci. Technol. 7 (2011) 147-152. https://dx.doi.org/10.1016/S1005-0302(11)60040-6
[13] X. Wang, R. Wang, C. Peng, T. Li, B. Liu, Synthesis and sintering of beryllium oxide nanoparticles, Prog. Nat. Sci. 20 (2010) 81–86. https://dx.doi.org/10.1016/S1002-0071(12)60011-2
[14] X. Sun, H. Hao, H. Ji, X. Li, S. Cai, C. Zheng, Synthesis of In2O3 with Appropriate Mesostructured Ordering and Enhanced Gas-Sensing Property, ACS Appl. Mater. Interfaces 6 (2014) 401–409. https://dx.doi.org/10.1021/am4044807
[15] L. Yin, D. Chen, M. Hu, H. Shi, D. Yang, B. Fan, G. Shao, R. Zhang, G. Shao, Microwave-assisted growth of In2O3 nanoparticles on WO3 nanoplates to improve H2S-sensing performance, J. Mater. Chem. A2 (2014) 18867-18874. https://dx.doi.org/10.1039/C4TA03426K
[16] G. Wang, J. Park, D. Wexler, M.S. Park, J.H. Ahn, Synthesis, Characterization, and Optical Properties of In2O3 Semiconductor Nanowires, Inorg. Chem. 46 (2007) 4778–4780. https://dx.doi.org/10.1021/ic700386z
[17] J.S. Lee, Y.J. Kwack, W.S. Choi, Inkjet-Printed In2O3 Thin-Film Transistor below 200°C, ACS Appl. Mater. Interfaces 5 (2013) 11578–11583. https://dx.doi.org/10.1021/am4025774
[18] Y. Wang, G. Duan, Y. Zhu, H. Zhang, Z. Xu, Z. Dai, W. Cai, Room temperature H2S gas sensing properties of In2O3 micro/nanostructured porous thin film and hydrolyzation-induced enhanced sensing mechanism, Sens. Actuators B 228 (2016) 74-84. https://dx.doi.org/10.1016/j.snb.2016.01.002
[19] S. Park, G.J. Sun, H. Kheel, W.I. Lee, S. Lee, S.B. Choi, C. Lee, Synergistic effects of codecoration of oxide nanoparticles on the gas sensing performance of In2O3 nanorods, Sens. Actuators B 227 (2016) 591-599. https://dx.doi.org/10.1016/j.snb.2015.12.098
[20] Y.Y. He, X. Zhao, Y. Cao, X. Zou, G.D. Li, Facile synthesis of In2O3 nanospheres with excellent sensitivity to trace explosive nitro-compounds, Sens. Actuators B 228 (2016) 295-301. https://dx.doi.org/10.1016/j.snb.2016.01.042
[21] A. Ilin, M. Martyshov, E. Forsh, P. Forsh, M. Rumyantseva, A. Abakumov, A. Gaskov, P. Kashkarov, UV effect on NO2 sensing properties of nanocrystalline In2O3, Sens. Actuators B Available online 16 March 2016.
[22] F. Gong, Y. Gong, H. Liu, M. Zhang, Y. Zhang, F. Li, Porous In2O3 nanocuboids modified with Pd nanoparticles for chemical sensors, Sens. Actuators B 223 (2016) 384-391. https://dx.doi.org/10.1016/j.snb.2015.09.053
[23] M.C. Pantilimon, T.S. Kang, S.J. Lee, Synthesis of nano-sized indium oxide (In2O3) powder by a polymer solution route, Ceram. Int. 42 (2016) 3762-3768. https://dx.doi.org/10.1016/j.ceramint.2015.11.006
[24] F. Gong, H. Liu, C. Liu, Y. Gong, Y. Zhang, E. Meng, F. Li, 3D hierarchical In2O3 nanoarchitectures consisting of nanocuboids and nanosheets for chemical sensors with enhanced performances, Mat. Lett. 163 (2016) 236-239. https://dx.doi.org/10.1016/j.matlet.2015.10.106
[25] G. Korotcenkov, V. Brinzari, B.K. Cho, In2O3-based multicomponent metal oxide films and their prospects for thermoelectric applications, Solid State Sci. 52 (2016) 141-148. https://dx.doi.org/10.1016/j.solidstatesciences.2015.12.019
[26] J.M. Yang, Z.P. Qi, Y.S. Kang, Q. Liu, W.Y. Sun, Shape-controlled synthesis and photocatalytic activity of In2O3 nanostructures derived from coordination polymer precursors, Chin. Chem. Lett. Available online 14 January 2016.
[27] J.L. Wang, Q.G. Zhai, S.N. Li, Y.C. Jiang, M.C. Hu, Mesoporous In2O3 materials prepared by solid-state thermolysis of indium-organic frameworks and their high HCHO-sensing performance, Inorg. Chem. Commun. 63 (2016) 48-52. https://dx.doi.org/10.1016/j.inoche.2015.11.015
[28] X. Liang, G. Jin, F. Liu, X. Zhang, S. An, J. Ma, G. Lu, Synthesis of In2O3 hollow nanofibers and their application in highly sensitive detection of acetone, Ceram. Int. 41 (2015) 13780-13787. https://dx.doi.org/10.1016/j.ceramint.2015.08.060
[29] X. Li, S. Yao, J. Liu, P. Sun, Y. Sun, Y. Gao, G. Lu, Vitamin C-assisted synthesis and gas sensing properties of coaxial In2O3 nanorod bundles, Sens. Actuators B 220 (2015) 68-74. https://dx.doi.org/10.1016/j.snb.2015.05.038
[30] K. Anand, J. Kaur, R.C. Singh, R. Thangaraj, Effect of terbium doping on structural, optical and gas sensing properties of In2O3 nanoparticles, Mater. Sci. Semicond. Process. 39 (2015) 476-483. https://dx.doi.org/10.1016/j.mssp.2015.05.042
[31] F. Li, J. Jian, R. Wu, J. Li, Y. Sun, Synthesis, electrochemical and gas sensing properties of In2O3 nanostructures with different morphologies, J. Alloys Compd. 645 (2015) 178-183. https://dx.doi.org/10.1016/j.jallcom.2015.04.157
[32] S. Park, S. Kim, G.J. Sun, S. Choi, S. Lee, C. Lee, Ethanol sensing properties of networked In2O3 nanorods decorated with Cr2O3 nanoparticles, Ceram. Int. 41 (2015) 9823-9827. https://dx.doi.org/10.1016/j.ceramint.2015.04.055
[33] D. Klaus, D. Klawinski, S. Amrehn, M. Tiemann, T. Wagner, Light-activated resistive ozone sensing at room temperature utilizing nanoporous In2O3 particles: Influence of particle size, Sens. Actuators B 217 (2015) 181-185. https://dx.doi.org/10.1016/j.snb.2014.09.021
[34] H. Meng, W. Yang, X. Yan, Y. Zhang, L. Feng, Y. Guan, A highly sensitive and fast responsive semiconductor metal oxide detector based on In2O3 nanoparticle film for portable gas chromatograph, Sens. Actuators B 216 (2015) 511-517. https://dx.doi.org/10.1016/j.snb.2015.04.068
[35] L. Wang, X. Xu, Semiconducting properties of In2O3 nanoparticle thin films in air and nitrogen, Ceram. Int. 41 (2015) 7687-7692. https://dx.doi.org/10.1016/j.ceramint.2015.02.097
[36] R. Yuvakkumar, J. Suresh, A. Joseph Nathanael, M. Sundrarajan, S.I. Hong, Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications, Mater. Sci. Eng. C 41 (2014) 17-27. https://dx.doi.org/10.1016/j.msec.2014.04.025
[37] R. Yuvakkumar, J. Suresh, A. Joseph Nathanael, M. Sundrarajan, S.I. Hong, Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals, Mat. Lett. 128 (2014) 170-174. https://dx.doi.org/10.1016/j.matlet.2014.04.112
[38] R. Yuvakkumar, J. Suresh, B. Saravanakumar, A. Joseph Nathanael, S.I. Hong, V. Rajendran, Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications, Spectrochim. Acta Part A. 137 (2015) 250-258. https://dx.doi.org/10.1016/j.saa.2014.08.022
[39] R. Yuvakkumar, A. Joseph Nathanael, S.I. Hong, Inorganic complex intermediate Co3O4 nanostructures using green ligation from natural waste resources, RSC Adv. 4 (2014) 44495–44499. https://dx.doi.org/10.1039/C4RA07646J
[40] R. Yuvakkumar, S.I. Hong, Incubation and aging effect on cassiterite type tetragonal rutile SnO2 nanocrystals, J. Mater. Sci. – Mater. Electron. 26 (2015) 2305-2310. https://dx.doi.org/10.1007/s10854-015-2684-1
[41] R. Yuvakkumar, J. Suresh, B. Saravanakumar, A. Joseph Nathanael, V. Rajendran, S.I. Hong, An environment benign biomimetic synthesis of mesoporous NiO concentric stacked doughnuts architecture, Microporous Mesoporous Mater. 207 (2015) 185–194. https://dx.doi.org/10.1016/j.micromeso.2015.01.027
[42] R. Yuvakkumar, A. Joseph Nathanael, S.I. Hong, Nd2O3: Novel synthesis and characterization, J. Sol-Gel Sci. Technol. 73 (2015) 511-517. https://dx.doi.org/10.1007/s10971-015-3629-0
[43] R. Yuvakkumar, S.I. Hong, Structural, compositional and textural properties of monoclinic α-Bi2O3 nanocrystals, Spectrochim. Acta Part A. 144 (2015) 281-286. https://dx.doi.org/10.1016/j.saa.2015.02.093
[44] R. Yuvakkumar, S.I. Hong, Structural phase transitions in niobium oxide nanocrystals, Phase Transitions 88 (2015) 897-906.