Contemporary Dielectric Materials, Chapter 5

$15.95

Intrinsic defects in ZnO nanoparticles synthesized by the sol-gel and combustion techniques

V. P. Singh, Chandana Rath

We investigate intrinsic defects in ZnO synthesized through sol-gel and combustion techniques using various spectroscopic techniques such as RAMAN, Photoluminescence and Positron annihilation. Pure wurtzite phase of ZnO shows E1(LO) mode in Raman spectra indicating the presence of interstitial zinc which decreases with increase in calcination temperature irrespective of synthesis techniques and further supported by Positron life time measurement. Williamson-Hall analysis shows tensile and compressive strain for samples made by sol-gel and combustion techniques, respectively. The photoluminescence study demonstrates broad defect band emission (DBE) in compressive strained sample only. The unusual increase in DBE peak with increase in calcination temperature is discussed.

Keywords
Oxides, Chemical Synthesis, Raman Spectroscopy, Positron Annihilation Spectroscopy, Defects

Published online 1/1/2017, 18 pages

DOI: https://dx.doi.org/10.21741/9781945291135-5

Part of Contemporary Dielectric Materials

References
[1] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Superlattices Microstruct 34 (2003) (1–2) 3–32.
[2] H. Morkoç, Ü. Özgür, Zinc oxide: fundamentals, materials and device technology, John Wiley & Sons (2008).
[3] L. Schmidt-Mende , J. L. MacManus-Driscoll, ZnO – nanostructures, defects, and devices, Materials today 10, (2007) 40–48. https://dx.doi.org/10.1016/S1369-7021(07)70078-0
[4] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan,V. Avrutin, S. J. Cho, H. Morkoçd, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 041301. https://dx.doi.org/10.1063/1.1992666
[5] C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, H. K. Cho, A comparative analysis of deep level emission in ZnO layers deposited by various methods, J. Appl. Phys. 105 (2009) 013502-013502-5. https://dx.doi.org/10.1063/1.3054175
[6] P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, The electronic structure and spectral properties of ZnO and its defects, Nucl. Instrum. Methods Phys. Res. Sect. B. 199 (2003) 286. https://dx.doi.org/10.1016/S0168-583X(02)01425-8
[7] S.B. Zhang, S.H. Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Phys. Rev. B. 63 (2001) 075205. https://dx.doi.org/10.1103/PhysRevB.63.075205
[8] P. Jiang, J. J. Zhou, H. F. Fang, C. Y. Wang, Z. L. Wang, S. S. Xie, Hierarchical shelled ZnO structures made of bunched nanowire arrays, Adv. Funct. Mater. 17 (2007) 1303-1310. https://dx.doi.org/10.1002/adfm.200600390
[9] V.P. Singh, D. Das and Chandana Rath, Studies on intrinsic defects related to Zn vacancy in ZnO nano particles, Materials Research Bulletin 48 (2013) 682. https://dx.doi.org/10.1016/j.materresbull.2012.11.026
[10] J. Qiu, Z. Jin, Z. Liu, X. Liu, G. Liu, W. Wu, X. Zhang, X. Gao, Fabrication of TiO2 nanotube film by well-aligned ZnO nano rod array film and sol-gel process, Thin Solid Films, 515 (2007) 2897-2902. https://dx.doi.org/10.1016/j.tsf.2006.08.023
[11] A. Dev, S. K. Panda, S. Kar, S. Chakrabarti, S. Chaudhuri, Surfactant-assisted route to synthesize well-aligned ZnOnanorod arrays on sol-gel-derived ZnO thin films, J. Phys. Chem. B. 110 (2006) 14266-14272. https://dx.doi.org/10.1021/jp062729l
[12] C. Kashinath, S.T. Patila, Arunab, T. Mimani, Combustion synthesis: an update, Current Opinion in Solid State and Materials Science 6 (2002) 507. https://dx.doi.org/10.1016/S1359-0286(02)00123-7
[13] A. Sugunan, H. C. Warad, M. Boman, J. Dutta, Zinc oxide nano wires in chemical bath on seeded substrates: role of hexamine, J. Sol-Gel Sci. Technol. 39 (2006) 49-56. https://dx.doi.org/10.1007/s10971-006-6969-y
[14] L. Znaidi, Sol-gel-deposited ZnO thin films, Mater. Sci. Eng. B. 174 (2010) 18-30. https://dx.doi.org/10.1016/j.mseb.2010.07.001
[15] S. Roy, W. Sigmund, F. Aldinger, Nano structured yttria powders via gel combustion, Mater. Res. 14 (1999) 1524-1531. https://dx.doi.org/10.1557/JMR.1999.0204
[16] T. Mimani, J. Alloys Compd. 315 (2001) 123-128; T. Mimani, K. C. Patil, Solution combustion synthesis of nano scale oxides and their composites, Mater. Phys. Mech. 4 (2001) 134-137.
[17] S. Bhaduri, S. B. Bhaduri, K. A. Prisbrey, Auto ignition synthesis of nano crystalline MgAl2O4 and related nano composites, J. Mater.Res. 14 (1999) 3571-3580. https://dx.doi.org/10.1557/JMR.1999.0470
[18] V. C. Sousa, A. M. Segadaes, M. R. Morelli, R. Kiminami, Combustion synthesized ZnO powders for varistor ceramics, J. Inorg. Mater. 1 (1999) 235-241. https://dx.doi.org/10.1016/S1466-6049(99)00036-7
[19] P. Kirkegaard, N.J. Pedersen, M. Eldrup, RISØ-M-2740. PATFIT-88: A Data-processing System for Positron Annihilation Spectra on Mainframe and Personal Computers, Risø National Laboratory, DK-4000 Roskilde, Denmark, 1989, Information on https://www.risoe.dk/rispubl/reports/ris-m-2740.pdf.
[20] G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metallurgica 1 (1953) 22-31.
https://dx.doi.org/10.1016/0001-6160(53)90006-6
[21] S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal, D. Jana, Role of defects in tailoring structural, electrical and optical properties of ZnO, Progress in Materials Science 54 (2009) 89-136. https://dx.doi.org/10.1016/j.pmatsci.2008.07.002
[22] K. C. Barick, M. Aslam, V. P. Dravid, D. Bahadur, Controlled fabrication of oriented co-doped ZnO clustered nano assemblies, J. Colloid Interface Sci. 349 (2010) 19-26. https://dx.doi.org/10.1016/j.jcis.2010.05.036
[23] V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nano particles for efficient sunlight-driven photo catalysis, ACS Appl. Mater. Interfaces 4 (2012) 2717-2725. https://dx.doi.org/10.1021/am300359h
[24] R. Sendi, S. Mahmud, Stress Control in ZnO Nano particle-based Discs via High-Oxygen Thermal Annealing at Various Temperatures, J. Phys. Sci. 24 (2013) 1-15.
[25] F. J. Manjon, B. Mari, J. Serrano, A. H. Romero, Silent Raman modes in zinc oxide and related nitrides, J. Appl. Phys. 97 (2005) 053516. https://dx.doi.org/10.1063/1.1856222
[26] K. Samanta, P. Bhattacharya, R. S. Katiyar, W. Iwamoto, P. G. Pagliuso, C. Rettori, Raman scattering studies in dilute magnetic semiconductor Zn1-xCoxO, Phys. Rev. B. 73 (2006) 245213. https://dx.doi.org/10.1103/PhysRevB.73.245213
[27] X. Xu, C. Cao, Hydrothermal synthesis of Co-doped ZnO flakes with room temperature ferromagnetism, J. Alloys Compd. 501 (2010) 265-268,
[28] L. B. Duan, X. R. Zhao, J. M. Liu, T. Wang, G. H. Rao, Room-temperature ferromagnetism in lightly Cr-doped ZnO nano particles, Appl. Phys.A 99 (2010) 679-683. https://dx.doi.org/10.1007/s00339-010-5590-7
[29] D. Wang, Z. Q. Chen, D. D. Wang, N. Qi, J. Gong, C. Y. Cao, Z. Tang, Positron annihilation study of the interfacial defects in ZnO nanocrystals: Correlation with ferromagnetism, J. Appl. Phys. 107 (2010) 023524-023524-8. https://dx.doi.org/10.1063/1.3291134
[30] S. K. Sharma, G. J. Exarhos, Raman spectroscopic investigation of ZnO and doped ZnO films, nanoparticles and bulk material at ambient and high pressures, Solid State Phenomena 55 (1997) 32-37. https://dx.doi.org/10.4028/www.scientific.net/SSP.55.32
[31] V.P. Singh, R.K.Singh, D.Das, ChandanaRath, Defects in Zn1-x-yCoxMgyO nanoparticles: Probed by XRD, RAMAN and PAS techniques, Materials Science in Semiconductor Processing 16 (2013) 659–666. https://dx.doi.org/10.1016/j.mssp.2012.12.006
[32] J. Serrano, A. H. Romero, F. J. Manjon, R. Lauck, M. Cardona, A. Rubio, Pressure dependence of the lattice dynamics of ZnO: An ab initio approach, Phys. Rev. B 69 (2004) 094306. https://dx.doi.org/10.1103/PhysRevB.69.094306
[33] A. K. Mishra, S. K. Chaudhuri, S. Mukherjee, A. Priyam, A. Saha, D. Das, Characterization of defects in ZnO nanocrystals: Photoluminescence and positron annihilation spectroscopic studies, J. Appl. Phys. 102 (2007) 103514. https://dx.doi.org/10.1063/1.2817598
[34] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, W. C. Harsch, Electrical properties of bulk ZnO, Solid State Commun. 105 (1998) 399-401. https://dx.doi.org/10.1016/S0038-1098(97)10145-4
[35] J. Liu, Y. Zhao, Y. J. Jiang, C. M. Lee, Y. L. Liu, G. G. Siu, Identification of zinc and oxygen vacancy states in non polar ZnO single crystal using polarized photoluminescence, Appl. Phys. Lett. 97 (2010) 231907. https://dx.doi.org/10.1063/1.3525714
[36] N. H. Alvi, W. ul Hassan, B. Farooq, O. Nur, M. Willander, Influence of different growth environments on the luminescence properties of ZnO nanorods grown by the vapor-liquid-solid (VLS) method, Mater. Lett. 106 (2013) 158-163. https://dx.doi.org/10.1016/j.matlet.2013.04.074
[37] L. Ke, S. C. Lai, J. D. Ye, V. L. Kaixin, S. J. Chua, Point defects analysis of zinc oxide thin films annealed at different temperatures with photoluminescence, Hall mobility, and low frequency noise, J. Appl. Phys. 108 (2010) 084502. https://dx.doi.org/10.1063/1.3494046
[38] A. Janotti, C. G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys. 72 (2009) 126501.
https://dx.doi.org/10.1088/0034-4885/72/12/126501
[39] R. Sendi, S. Mahmud, Stress Control in ZnO Nano particle-based Discs via High-Oxygen Thermal Annealing at Various Temperatures, J. Phys. Sci. 24 (2013) 1-15.
[40] U. Ilyas, R. S. Rawat, T. L. Tan, P. Lee, R. Chen, H. D. Sun, L. Fengji, S. Zhang, Oxygen rich p-type ZnO thin films using wet chemical route with enhanced carrier concentration by temperature-dependent tuning of acceptor defects, J. Appl. Phys. 110 (2011) 093522. https://dx.doi.org/10.1063/1.3660284