New Polymeric Composite Materials, Chapter 9

$15.95

Advances in Electrochemical Cholesterol Nanosensors

Mitali Saha

Electrochemical biosensors have benefited extensively from advances in nanomaterials (e.g., metal nanoparticles, carbon nanotubes and graphene). Among the various biomolecules, cholesterol has aroused considerable interest in recent years on account of its being an important marker in clinical diagnosis. Recent research has shown that cholesterol plays an important role in the brain synapses and also in the immune system including protection against cancer. As biosensors have the ability to detect and measure constantly the concentration of specific organic or inorganic substances in desired specimens, the thrust to monitor the presence of cholesterol in blood is driving the need for the development of efficient cholesterol biosensors. This chapter highlights the recent advances in the field of enzymatic and non enzymatic cholesterol sensors with the use of nanotechnology.

Keywords
Nanomaterials, Electrochemical, Cholesterol, Biosensor

Published online 11/1/2016, 16 pages

DOI: https://dx.doi.org/10.21741/9781945291098-9

Part of New Polymeric Composite Materials

References
[1] J.M Kauffmann, G.G. Guilbault, Potentiometric enzyme electrodes, Bioprocess. Technol. 15 (1991) 63–82.
[2] A.L. Ghindilis, P. Atanasov, M. Wilkins, E. Wilkins, Immunosensors: electrochemical sensing and other engineering approaches, Biosens. Bioelectron. 13 (1998) 113–131.
https://dx.doi.org/10.1016/S0956-5663(97)00031-6
[3] J. Wang, Amperometric biosensors for clinical and therapeutic drug monitoring: a review, J. Pharm. Biomed. Anal. 19 (1999) 47–53.
https://dx.doi.org/10.1016/S0731-7085(98)00056-9
[4] H. Ohnuki, T. Saiki, A. Kusakari, H. Endo, M. Ichihara, M. Izumi, Incorporation of glucose oxidase into languir-blodgett films based on Prussian blue applied to amperometric glucose biosensor, Langmuir. 23 (2007) 4675–4681.
https://dx.doi.org/10.1021/la063175g
[5] S.A.Marzouk, S.S. Ashraf, K.A.Tayyari, Prototype amperometric biosensor for sialic acid determination, Anal. Chem. 79 (2007) 1668–1674.
https://dx.doi.org/10.1021/ac061886d
[6] M. Yemini, Y. Levi, E. Yagil, J. Rishpon, Specific electrochemical phage sensing for Bacillus cereus and Mycobacterium smegmatis, Bioelectrochemistry. 70 (2007) 180–184.
https://dx.doi.org/10.1016/j.bioelechem.2006.03.014
[7] M. Pohanka, P. Skládal, M. Kroča, Biosensors for biological warfare agent detection, Def. Sci. J. 57 (2007) 185–193.
https://dx.doi.org/10.14429/dsj.57.1760
[8] M. Pohanka, D. Jun, K. Kuča, Amperometric biosensor for evaluation of competitive cholinesterase inhibition by the reactivator HI-6, Anal. Lett. 40 (2007) 2351–2359.
https://dx.doi.org/10.1080/00032710701576007
[9] G. Liu, Y. Lin, Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents, Anal. Chem. 78 (2006) 835–843.
https://dx.doi.org/10.1021/ac051559q
[10] C.C. Allain, L. Poon, S.G. Chan, W. Richmond, P. Fu, Enzymatic determination of total serum cholesterol, Clin. Chem. 20 (1974) 470-473.
[11] P. Roschlau, E. Bernt, W. Gruber, Enzymatishe Bestimmung des Cesamt-Cholesterins in Serum, Z. Klin. chem. Klin. Biochem. 12 (1974) 226-229.
[12] P. Cullen, K. Tegelkamp, M. Fobker, F. Kannenberg, G. Assmann, Measuring cholesterol in macrophages: comparison of high-performance liquid chromatography and gas-liquid chromatography with enzymatic fluorometry, Anal. Biochem. 251 (1997) 39 – 44.
https://dx.doi.org/10.1006/abio.1997.2227
[13] A.J.Cunningham, Introduction to Bioanalytical Sensors; John Wiley & Sons Inc.: New York, (1998) 167-192.
[14] M.H.Yang, C.X.Li, Y.H.Yang, G.L.Shen, R.Q.Yu, Hydrogen peroxide biosensor based on enzyme multilayers through electrostatic adsorption. Acta Chim. Sin. 62 (2004) 502-507.
[15] S. Singh, A. Chaubey, B.D. Malhotra, Amperometric cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on conducting polypyrrole films, Anal. Chim. Acta. 502 (2004) 229-234.
https://dx.doi.org/10.1016/j.aca.2003.09.064
[16] S. Brahim, D. Narinesingh, A. Guiseppi-Elie, Amperometric determination of cholesterol in serum using a biosensor of cholesterol oxidase contained within a polypyrrole-hydrogel membrane, Anal. Chim. Acta. 448 (2001) 27-36.
https://dx.doi.org/10.1016/S0003-2670(01)01321-6
[17] H.Y. Wang, S.L. Mu, Bioelectrochemical characteristics of cholesterol oxidase immobilized in a polyaniline film. Sensor. Actuator. B-Chem. 56 (1999) 22-30.
[18] E. Tamiya, Y. Sugiura, A. Akiyama, I. Karube, Ultramicro-H2O2 electrode for fabrication of the in-vivo biosensor. Ann. N.Y. Acad. Sci. 613 (1990) 396-400.
https://dx.doi.org/10.1111/j.1749-6632.1990.tb18185.x
[19] V. Rajesh Bisht, W. Takashima, K. Kaneto, An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials. 26 (2005) 3683-3690.
https://dx.doi.org/10.1016/j.biomaterials.2004.09.024
[20] C. Dhand, S.K. Arya, M. Datta, B.D. Malhotra, Polyaniline-carbon nanotube composite film for cholesterol biosensor. Anal. Biochem. 383 (2008) 194-199.
https://dx.doi.org/10.1016/j.ab.2008.08.039
[21] P.J. Britto, K.S.V. Santhanam, P.M. Ajayan, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochem. Bioenerg. 41 (1996) 121–125.
https://dx.doi.org/10.1016/0302-4598(96)05078-7
[22] G. Li, J.M. Liao, G.Q. Hu, N.Z. Ma, P.J. Wu, Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood, Biosens. Bioelectron. 20 (2005) 2140–2144.
https://dx.doi.org/10.1016/j.bios.2004.09.005
[23] A.L. Gopalan, K.P. Lee, D. Ragupathy, Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes–gold nanoparticles composite covered with a layer of chitosan–room-temperature ionic liquid network, Biosens. Bioelectron. 24 (2009) 2211–2217.
https://dx.doi.org/10.1016/j.bios.2008.11.034
[24] P.R. Solanki, A. Kaushik, A. A. Ansari, A.Tiwari, B. D.Malhotra, Multi-walled carbon nanotubes/sol–gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor, Sens. Actuators B. 137 (2009) 727–735.
https://dx.doi.org/10.1016/j.snb.2008.12.044
[25] J.Y. Yang, Y. Li, S.M. Chen, M. Lin, Fabrication of a Cholesterol Biosensor Based on Cholesterol Oxidase and Multiwall Carbon Nanotube Hybrid Composites, Int. J. Electrochem. Sci. 6 (2011) 2223–2234.
[26] J.K.N. Mbindyo, B.D. Reiss, B.R. Martin, C.D. Keating, M.J. Natan, T.E. Mallouk, DNA-directed assembly of gold nanowires on complementary surfaces, Adv. Mater. 13 (2001) 249–254.
https://dx.doi.org/10.1002/1521-4095(200102)13:4<249::AID-ADMA249>3.0.CO;2-9
[27] S. Keebaugh, A.K. Kalkan, W.J. Nam, S.J. Fonash, Gold nanowires for the detection of elemental and ionic mercury, Electrochem. Solid-State Lett. 9 (2006) H88–H91.
https://dx.doi.org/10.1149/1.2217130
[28] N.I. Kovtyukhova, T.E.Mallouk, Nanowires as building blocks for self assembling logic and memory circuits, Chem. Eur. J. 8 (2002) 4355–4363.
https://dx.doi.org/10.1002/1521-3765(20021004)8:19<4354::AID-CHEM4354>3.0.CO;2-1
[29] C.D. Keating, M.J. Natan, Striped metal nanowires as building blocks and optical tags, Adv. Mater. 15 (2003) 451–454.
https://dx.doi.org/10.1002/adma.200390105
[30] S. Mann, W. Shenton, M. Li , S. Connolly , D. Fitzmaurice , Carbon nanotube-templated self-assembly and thermal processing of gold nanowires, Adv. Mater. 12 (2000) 1430–1432.
https://dx.doi.org/10.1002/(SICI)1521-4095(200001)12:2<147::AID-ADMA147>3.0.CO;2-U
[31] S. Connolly, S. Cobbe, D. Fitzmaurice, Effects of ligand-receptor geometry and stoichiometry on protein-induced aggregation of biotin-modified colloidal gold, J. Phys. Chem. B. 105 (2001) 2222–2226.
https://dx.doi.org/10.1021/jp001948i
[32] V. Victoria, S.C. Shumyantseva, B. Valter, D.J. Rileyd, V. B. Tatiana, G.S. Konstantin, I.A. Alexander, N. Claudio, Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium–graphite electrodes, Biosens. Bioelectron. 21 (2005) 217–222.
https://dx.doi.org/10.1016/j.bios.2004.10.008
[33] C. Dhand, S.P. Singh, S.K. Arya, M. Datta, B. D. Malhotra , Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension, Anal. Chim. Acta . 602 (2007) 244–251.
https://dx.doi.org/10.1016/j.aca.2007.09.028
[34] B. Krajewska, Application of chitin- and chitosan-based materials for enzyme immobilizations: a review, Enzyme Microb. Technol. 35 (2004) 126–139.
https://dx.doi.org/10.1016/j.enzmictec.2003.12.013
[35] Y.C. Tsai, S.Y. Chen, H.W. Liaw, Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors, Sens. Actuators B: Chem. 125 (2007) 474–481.
https://dx.doi.org/10.1016/j.snb.2007.02.052
[36] D. Du, X. Huang, J. Cai, A. Zhang, Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube–chitosan matrix, Sens. Actuators B: Chem. 127 (2007) 531–535.
https://dx.doi.org/10.1016/j.snb.2007.05.006
[37] S. Singh, A. Chaubey, B.D. Malhotra, Amperometric cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on conducting polypyrrole films. Anal. Chim. Acta. 502 (2004) 229-324.
https://dx.doi.org/10.1016/j.aca.2003.09.064
[38] A. Ansari, A. Kaushik, P. Solanki, B. D. Malhotra, Sol–gel derived nanoporous cerium oxide film for application to cholesterol biosensor. Electrochem. Commun. 10 (2008) 1246-1249.
https://dx.doi.org/10.1016/j.elecom.2008.06.003
[39] R. Khan, A. Kaushik, P. Solanki, A. Ansari, M. Pandey, B. Malhotra, Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor, Anal. Chim. Acta. 616 (2008) 207-213.
https://dx.doi.org/10.1016/j.aca.2008.04.010
[40] S. Singh, S. Arya, P. Pandey, B. Malhotra, S. Saha, K. Sreenivas, V. Gupta, Ultrasensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles, App. Phys. Lett. 91 (2007) 63901-63904.
https://dx.doi.org/10.1063/1.2768302
[41] C. Bongiovanni, T. Ferri, A. Poscia, M. Viralli, R. Santucci, A. Desideri, An electrochemical multienzymatic biosensor for determination of cholesterol. Bioelectrochem. 54 (2001) 17-22.
https://dx.doi.org/10.1016/S0302-4598(01)00105-2
[42] K.S. Novoselov, A.K. Geim, S.V. Morozov, Y . Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306 (2004) 666–669.
https://dx.doi.org/10.1126/science.1102896
[43] N. Agnihotri, et al. Non-enzymatic electrochemical detection of cholesterol using β-cyclodextrin functionalized graphene. Biosens. Bioelectron. 63 (2014) 212–217.
https://dx.doi.org/10.1016/j.bios.2014.07.037
[44] M. Pumera, Electrochemistry of graphene: new horizons for sensing and energy storage. Chem. Rec. 9 (2009) 211–223.
https://dx.doi.org/10.1002/tcr.200900008
[45] M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of grapheme, Chem. Rev. 110 (2010) 132–145.
https://dx.doi.org/10.1021/cr900070d
[46] M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chem. Soc. Rev. 39 (2010) 4146–4157.
https://dx.doi.org/10.1039/c002690p
[47] D.A.C. Brownson, C.E. Banks, Graphene electrochemistry: an overview of potential applications. Analyst. 135 (2010) 2768–2778.
https://dx.doi.org/10.1039/c0an00590h
[48] P. Sejin, B. Hankil, C. T. Dong, Electrochemical non-enzymatic glucose sensors, review. Anal. Chim. Acta. 556 (2006) 46–57.
https://dx.doi.org/10.1016/j.aca.2005.05.080
[49] Y. Li, H. Bai, Q. Liu, J. Bao, M. Han, Z. Dai, A non enzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles. Biosens. Bioelectron. 25 (2010) 2356–2360.
https://dx.doi.org/10.1016/j.bios.2010.03.036
[50] Y.J. Lee, J.Y.Park, Non enzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles, Biosens. Bioelectron. 26 (2010) 1353–1358.
https://dx.doi.org/10.1016/j.bios.2010.07.048
[51] Y.J. Lee, J.D. Kim, J.Y. Park, CMOS-integrable enzyme-free amperometric cholesterol nano-biosensor for U-Health and POC applications, Journal of the Korean Physical Society. 54 (2009) 1769–1773.
https://dx.doi.org/10.3938/jkps.54.1769
[52] Y. Jiao, L. Hyuck, C. Misuk, N. Jeodo, L. Youngkwan, Non enzymatic cholesterol sensor based on spontaneous deposition of platinum nanoparticles on layer-by-layer assembled CNT thin film. Sensors and Actuators B. 171– 172 (2012) 374– 379.
[53] N. H. Binh, N. V. Chuc, N.V. Tu, L. H. Doan, N. V. Quynh, T. N. T. Thanh, D. Q. Phuc, N. X. Nghia, P. N. Minh, T. D. Lam, Development of the layer-by-layer biosensor using graphene films: application for cholesterol determination. Adv. Nat. Sci. Nanosci. Nanotechnol. 4 (2013) 015013-015016.
https://dx.doi.org/10.1088/2043-6262/4/1/015013
[54] B. Singh, B. Nitin, V. K. Jain, B. Vasuda, A novel nanographite based non-enzymatic cholesterol sensor”, In: Jain. V. K., Verma. A. (eds.), Physics of semiconductor devices, Environmental science and engineering , Springer International Publishing , Switzerland, (2014) 531-534.
https://dx.doi.org/10.1007/978-3-319-03002-9_133