New Polymeric Composite Materials, Chapter 8

$15.95

Organic-TiO2 Nano Composite Membranes

Dhiraj Sud

The synergy between organic and inorganic materials offers the possibility for the development of new generation innovative organic–inorganic composites with diversified applications such as catalysis, photocatalysis, separation technology, energy storage and drug delivery. Recently there has been an upsurge in the development of polymeric matrix nanocomposite membranes for gas separation, protein exchange membrane fuel cell, direct methanol fuel cell, solvent nanofiltration and water treatment. Membrane separation technology has been proven to be an economical method of water purification due to its high separation efficiency, easy operation and low energy consumption. The incorporation of well-known titanium oxide (TiO2) photocatalyst into polymeric matrices is known to affect membrane structure and properties. The potential of TiO2 to impart much desired characteristics such as antimicrobial, super-hydrophilic and photocatalytic properties to the membranes could lead to finding aj energy and cost effective solution for water treatment. The present chapter discusses the scientific and technical advancements in the development of organic polymer based TiO2 nanocomposite membranes for water treatment.

Keywords
Titanium oxide, Photocatalyst, Nanocomposite Membrane, Organic Pollutants

Published online 11/1/2016, 40 pages

DOI: https://dx.doi.org/10.21741/9781945291098-8

Part of New Polymeric Composite Materials

References
[1] Horike, S.M, Tamaki, K., Long, J.R. et al. (2008). Size-selective lewis acid catalysis in a microporous metal-organic frame work with exposed Mn+2 coordination sites. J. Am.Chem.Soc.130:5854–5855.
https://dx.doi.org/10.1021/ja800669j
[2] Xiao, G.A., Huang, H., Su, T. Tan. et al. (2013). The activity of acrylic–silicon/nano-TiO2 films for the visible-light degradation of formaldehyde and NO2. Build.Environ.65: 215–221.
https://dx.doi.org/10.1016/j.buildenv.2013.04.014
[3] Stein, A. Melde., Schroden, R., Cet, B.J. et al. (2000). Hybrid inorganic–organic mesoporous silicates-nanoscopic reactors coming of age.Adv.Mater.12:1403–1419.
https://dx.doi.org/10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X
[4] Yang, Z., Shen, J., Jayaprakash., N., Archer, LA et al. (2012). Synthesis of organic–inorganic hybrids by mini emulsion polymerization and their application for electrochemical energy storage. Energy Environ.Sci. 5:7025–7032.
https://dx.doi.org/10.1039/c2ee03230a
[5] Corma, A., Díaz, U., Arrica, M., Fernández, E., Ortega, Í. et al. (2009). Organic–inorganic nano spheres with responsive molecular gates for drug storage and release. Angew. Chem.Int.Ed.121:6365–6368.
https://dx.doi.org/10.1002/ange.200902208
[6] Yan, L., Li, Y.S., Xiang, C.B., Xianda, S. et al. (2006). Effect of nano-sized Al2O3-particle addition on PVD Filtration membrane performance. J.Membr.Sci.276:162–167.
https://dx.doi.org/10.1016/j.memsci.2005.09.044
[7] Tripathi, B.P., Kumar, M., Saxena, A., Shahi, V.K. et al.(2010). Bifunctionalized organic– inorganic charged nano composite membrane for pervaporation dehydration of ethanol.J.Colloid Interface Sci.346:54–60.
https://dx.doi.org/10.1016/j.jcis.2010.02.022
[8] Bosc, F., Lacroix-Desmazes, P., Ayral, A. et al. (2006).TiO2 anatase-based membranes with hierarchical porosity and photocatalytic properties. J.Colloid Interface Sci.304:545–548.
https://dx.doi.org/10.1016/j.jcis.2006.09.064
[9] Pang, R., Li, X., Li, J., Lu, Z., Sun, X., Wang, L.et al. (2014). Preparation and characterization of ZrO2/PES hybrid ultra filtration membrane with uniform ZrO2 nanoparticles. Desalination. 332:60–66.
https://dx.doi.org/10.1016/j.desal.2013.10.024
[10] Han, P., Yahui, H., Yang, W., Linlin, L. et al.(2006). Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J. Membr.Sci.284:9–16.
https://dx.doi.org/10.1016/j.memsci.2006.07.052
[11] Li, X., Pang, R., Li, J., Sun, X., Shen, J., Han, W., Wang, L. et al. (2013). In situ formation of Ag nanoparticles in PVDF ultrafiltration membrane to mitigate organic and bacterial fouling. Desalination.324:48–56.
https://dx.doi.org/10.1016/j.desal.2013.05.021
[12] Rahimpour, A., Jahanshahi, M., Rajaeian, B., Rahimnejad, M. et al. (2011). TiO2 entrapped nano-composite PVDF/SPES membranes: preparation, characterization, anti- fouling and antibacterial properties. Desalination.278:343–353.
https://dx.doi.org/10.1016/j.desal.2011.05.049
[13] Ng, L.Y., Mohammad, A.W., Leo, C.P., Hilal, N. et al. (2013). Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination.308: 15–33.
https://dx.doi.org/10.1016/j.desal.2010.11.033
[14] Buonomenna, M.G. (2013). Membrane processes for a sustainable industrial growth. Rsc. Adv.3:5694–5740
https://dx.doi.org/10.1039/c2ra22580h
[15] Yin, Jun., Deng, Baolin.et al. (2015).Polymer-matrix nanocomposite membranes for water treatment. Journal of MembraneScience. 479:256–275
https://dx.doi.org/10.1016/j.memsci.2014.11.019
[16] Van der Bruggena, B., M¨antt¨ ari b, M., Nystr¨omb, M.et al. (2008).Drawbacks of applying nanofiltration and how to avoid them: Separation and Purification Technology. 63:251–263
https://dx.doi.org/10.1016/j.seppur.2008.05.010
[17] Alzahrania, Salem., Mohammad, Abdul Wahab.et al. (2014). Challenges and trends in membrane technology implementation for produced water treatment. Journal of Water Process Engineering. 4:107–133
https://dx.doi.org/10.1016/j.jwpe.2014.09.007
[18] Kiriakidou, F., Kondarides, D.I., Verykios, X.E. et al. (1999). The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes. Catal.Today. 54: 119-130.
https://dx.doi.org/10.1016/S0920-5861(99)00174-1
[19] Sun, B. and Smirniotis, P.G.et al.(2003). Interaction of anatase and rutile TiO2 particles in aqueous photooxidation. Catal.Today. 88: 49-59.
https://dx.doi.org/10.1016/j.cattod.2003.08.006
[20] Kumar A, Sharma G, NaushadM, Kalia S, Singh P (2014) A Polyacrylamide/Ni0.02Zn0.98O nanocomposite with high solar light photoacatalytic activity and efficient adsorption capacity for toxic dyes removal. J IndEngChem Res 53:15549-15560.
[21] Hu, Y., Tsai, H.L., Huang, C.L.et al.(2003). Effect of Brookite Phase on the Anatase-Rutile Transition in Titania Nanoparticles. Eur. Ceram. Soc. 23: 691-696.
https://dx.doi.org/10.1016/S0955-2219(02)00194-2
[22] Nicholls, D. (1974). Complexes and First-Row Transition Elements. MacMillan Education: Hong Kong.
https://dx.doi.org/10.1007/978-1-349-02335-6
[23] Shao, Y., Tang, D., Sun, J., Lee, Y., Xiong, W.et al. (2004). Lattice deformation and phase transformation from nano-scale anatase to nano-scale rutile TiO2 prepared by a sol-gel technique. China Particuology.2: 119.
https://dx.doi.org/10.1016/S1672-2515(07)60036-0
[24] Rehman, S., Ullah, R., Butt, A.M., Gohar, N.D.et al. (2009). Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 170: 560–569.
https://dx.doi.org/10.1016/j.jhazmat.2009.05.064
[25] Suppan, P. (1994). Chemistry and Light. Royal Society of Chemistry: Cambridge, 107.
[26] Hoffman, A., Carraway, E.R., Hoffman, M.et al. (1994). Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids. Environ. Sci. Technol. 28: 776-785.
https://dx.doi.org/10.1021/es00054a006
[27] Mahdavi, F., Burton, T.C., Li, Y.et al. (1993). Photoinduced reduction of nitro compounds on semiconductor particles. J. Org. Chem. 58: 744-746.
https://dx.doi.org/10.1021/jo00055a033
[28] Choi, W., Termin, A., Hoffmann, M.R.et al. (1994). The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. B. 98: 13669–13679.
https://dx.doi.org/10.1021/j100102a038
[29] Vinodgopal, K. and Kamat, P.V.et al. (1995). Enhanced rates of photocatalytic degradation of an Azo Dye using SnO2/TiO2 coupled semiconductor thin films. Environ. Sci. Technol. 29: 841-845.
https://dx.doi.org/10.1021/es00003a037
[30] Kaur, P. and Sud, D.et al. (2012). Photocatalytic degradation of quinalphos in aqueous TiO2 suspension: Reaction pathway and identification of intermediates by GC/MS.J.Mole.Catal.A:Chemical,
https://dx.doi.org/10.1016/j.molcata.2012.08.005.
[31] Li, Y., Hwang, D.S., Lee, N.H., Kim, S.J.et al. (2005). Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chem. Phys. Lett. 404: 25-29.
https://dx.doi.org/10.1016/j.cplett.2005.01.062
[32] Xu, Z., Shang, J., Liu, C., Kang, C., Guo, H., Du, Y.et al.(1999). The preparation and characterization of TiO2 ultrafine particles. Mater. Sci. Eng. B. 63: 211–214.
https://dx.doi.org/10.1016/S0921-5107(99)00084-7
[33] Rahimpour, A., Jahanshahi, M., Rajaeian, B., Rahimnejad, M.et al. (2011). TiO2 entrapped nano- composite PVDF/SPES membranes: preparation, characterization, antifouling and antibacterial properties. Desalination, 278: 343–353.
https://dx.doi.org/10.1016/j.desal.2011.05.049
[34] Kim, Sung Ho., Kwak , Seung-Yeop., Sohn, Byeong-Hyeok ., Park , Tai Hyun.et al.(2003). Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J. Membr Sci 211:157–165
https://dx.doi.org/10.1016/s0376-7388(02)00418-0
[35] Madaeni, S.S., Mansourpanah Y. (2004).Chemical cleaning of reverse osmosis membranes fouled. Desalination. 161: 13-24
https://dx.doi.org/10.1016/S0011-9164(04)90036-7
[36] Razmjou, A., Mansouria, J., Chen, V., Lim, M., Amal, R. et al. (2011). Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process. J. Membr. Sci.380:98– 113.
https://dx.doi.org/10.1016/j.memsci.2011.06.035
[37] Wang, Q., Wang, X., Wang, Z., Huang, J., Wang, Y.et al. (2013). PVDF membranes with simultaneously enhanced permeability and selectivity by breaking the tradeoff effect via atomic layer deposition of TiO2. J. Membr. Sci. 442: 57–64.
https://dx.doi.org/10.1016/j.memsci.2013.04.026
[38] Meng, S., Mansouri, J., Ye, Y., Chen, V.et al. (2014). Effect of templating agents on the properties and membrane distillation performance of TiO2 -coated PVDF membranes. J. Membr. Sci. 450: 48–59.
https://dx.doi.org/10.1016/j.memsci.2013.08.036
[39] Luo, M.et al. (2003). Preparation and characterization of polyethersulfone/TiO2 nanoparticles composite ultrafilteration membrane with high hydrophilicity and its pollution mechanism. Ph.D. Thesis, xi’an Jiaotong university.
[40] Razmjou, A., Holmes, A.R.L., Li, H., Mansouri, J., Chen, V.et al. (2012). The effect of modified TiO2 nanoparticles on polyethersulfone ultrafiltration hollow fiber membranes, Desalination 287:271-280.
https://dx.doi.org/10.1016/j.desal.2011.11.025
[41] Luo, M., Tang, W., Zhao, J., Pu, C.et al. (2006). Hydrophilic modification of poly (ether sulfone) used TiO2 nanoparticles by a sol–gel process. J. Mater. Process. Technol, 172:431–436.
https://dx.doi.org/10.1016/j.jmatprotec.2005.11.004
[42] Li, J.H., Xu, Y.Y., Zhu, L.P., Wang, J.H., Du, C.H. et al.(2009).Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. Journal of Membr. Sci. 326: 659-666
https://dx.doi.org/10.1016/j.memsci.2008.10.049
[43] Rahimpour, A., Madaeni, S.S., Taheri, A.H., Mansourpanah, Y.et al. (2008). Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Membr. Sci. 313:158– 169
https://dx.doi.org/10.1016/j.memsci.2007.12.075
[44] Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim,J.P., Min,B.R. et al. (2008). Polyamide thin –film nanofiltration membranes containing TiO2 nanoparticles. Desalination.219:48-56.
https://dx.doi.org/10.1016/j.desal.2007.06.003
[45] Rajesh, S., Senthilkumar, S., Jayalakshmi, A., Nirmala, M.T., Ismail, A.F., Mohan, D.et al. (2013). Preparation and performance evaluation of poly (amide–imide) and TiO2nanoparticles impregnated polysulfone nanofiltration membranes in the removal of humic substances. Coll. Surf. A Physicochem. Eng. Asp, 418:92–104.
https://dx.doi.org/10.1016/j.colsurfa.2012.11.029
[46] Wanbin, Li., Zhihong, Yang., Qin, Meng., Chong, Shen., Guoliang, Zhang.et al. (2014). Thermally stable and solvent resistant self-crosslinked TiO2/PAN hybrid hollow fiber membrane fabricated by mutual supporting method. Journal of Membr.Sci. 467:253–261
https://dx.doi.org/10.1016/j.memsci.2014.05.019
[47] Cruz, N.K.O., Semblante, G.U., Senoro, D.B., You, S.J., Lu, S.C.et al. (2013). Dye degradation and antifouling properties of polyvinylidene fluoride/titanium oxide membrane prepared by sol–gel method. J. Chinese Inst. Chem. Eng.
[48] Madaeni, S.S., Zinadini, S., Vatanpour, V.et al. (2011). A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J. Membr. Sci. 380:155–162.
https://dx.doi.org/10.1016/j.memsci.2011.07.006
[49] Mills, A., Hunte, S.L. (1997).Anoverviewof semiconductor photocatalysis. J. Photochem. Photobiol. A: Chem. 1:108.
[50] Ebert, K., Fritsch, D., Koll, J., Tjahjawiguna, C.et al. (2004).Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes. J. Membr. Sci. 233:71–78
https://dx.doi.org/10.1016/j.memsci.2003.12.012
[51] Mansourpanah, Y., Madaeni, S.S., Rahimpour, A., Farhadian, A., Taheri, A.H. et al. (2009). Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: performance, characterization and fouling resistant capability. J. Membr. Sci. 330: 297–306.
https://dx.doi.org/10.1016/j.memsci.2009.01.001
[52] Kwak, S.Y., Kim, S.H., Kim, S.S. et al. (2001). Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal antifouling Part 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-filmcomposite (TFC) membrane. Environ. Sci. Technol. 35:2388
https://dx.doi.org/10.1021/es0017099
[53] Flemming, H.C.et al. (1997).Reverse osmosis membrane biofouling.Thermal Fluid Sci. 14:382.
https://dx.doi.org/10.1016/S0894-1777(96)00140-9
[54] Kimura, K., Amy, G., Drewes, J., Watanabe, Y.et al. (2003).Adsorption of hydrophobic compounds onto NF/RO membranes: an artefact leading to overestimation of Rejection. J. Membr. Sci. 221: 89–101.
https://dx.doi.org/10.1016/S0376-7388(03)00248-5
[55] M¨antt¨ ari, M., Puro, L., Nuortila-Jokinen, J., Nystr ¨om, M.et al. (2000). Fouling effects of polysaccharides and humic acid in nanofiltration. J. Membr. Sci. 165:1–17.
[56] Sch¨afer, A.I., Andritsos, N., Karabelas, A.J., Hoek, E.M.V., Schneider, R., Nystr ¨om, M.et al. (2005).Fouling in nanofiltration, in: A.I. Sch¨afer, A.G. Fane, T.D.Waite (Eds.), Nanofiltration: Principles and Applications, Elsevier, Oxford, UK.
[57] Van der Bruggen, B., Kim, J.H., DiGiano, F.A., Geens, J., Vandecasteele, C.et al.(2004).Influence of MFpretreatment on NF performance for aqueous solutions containing particles and an organic foulant. Sep. Purif. Technol. 36 (3):203–213.
https://dx.doi.org/10.1016/S1383-5866(03)00216-8
[58] Zhang, M., Song, L.et al. (2000).Mechanisms and parameters affecting flux decline in crossflow microfiltration and ultrafiltration of colloids. Environ. Sci. Technol. 34: 3767–3773.
https://dx.doi.org/10.1021/es990475u
[59] Costa, A.R., de Pinho, M.N.et al. (2005).Effect ofmembrane pore size and solution chemistry on the ultrafiltration of humic substances solutions. J. Membr. Sci. 255: 49–56.
https://dx.doi.org/10.1016/j.memsci.2005.01.016
[60] Song, L., Chen, K.L., Ong, S.L., Ng, W.J. et al. (2004).A new normalization method for determination of colloidal fouling potential in membrane processes. J. Colloids Interface Sci. 271:426–433
https://dx.doi.org/10.1016/j.jcis.2003.12.016
[61] Ivnitsky, H., Katz, I., Minz, D., Volvovic, G., Shimoni, E., Kesselman, E., Semiat, R., Dosoretz, C.G. et al. (2007).Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment. Water Res. 41 (17): 3924–3935.
https://dx.doi.org/10.1016/j.watres.2007.05.021
[62] Li, J., Xu, Z., Yang, H., Yu, L., Liu, M.et al. (2009).Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci. 255: 4725–4732.
https://dx.doi.org/10.1016/j.apsusc.2008.07.139
[63] Potts, D.E., Ahlert, R.C., Wang, S.S. et al. (1981). A critical review of fouling of reverse osmosis membranes, Desalination. 36:235.
https://dx.doi.org/10.1016/S0011-9164(00)88642-7
[64] Matthiasson, E., Sivik, B. et al. (1980).Concentration polarization and fouling. Desalination. 35: 59.
https://dx.doi.org/10.1016/S0011-9164(00)88604-X
[65] Bet-moushoul E., Mansourpanah, Y., Farhadi, Kh., Tabatabaei, M. et al.(2016). TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes Chemical Engineering Journal, 283: 29–46
https://dx.doi.org/10.1016/j.cej.2015.06.124
[66] Shon, H.K., Vigneswaran, S., Ben Aim, R., Ngo, H.H., Kim, I.S., Cho, J. et al.(2005).Influence of flocculation and adsorption as pretreatment on the fouling of ultrafiltration and nanofiltration membranes: application with biologically treated sewage effluent. Environ. Sci. Technol. 39 (10):3864–3871.
https://dx.doi.org/10.1021/es040105s
[67] Song, W., Ravindran, V., Koel, B.E., Pirbazari, M. et al. (2004). Nanofiltration of natural organic matter with H2O2/UV pretreatment: fouling mitigation and membrane surface Characterization. J. Membr. Sci. 241 (1): 143–160.
https://dx.doi.org/10.1016/j.memsci.2004.04.034
[68] Hillis, P., Padley, M.B., Powell, N.I., Gallagher, P.M. et al. (1998).Effects of backwash conditions on out-to-in membrane microfiltration. Desalination. 118;197.
https://dx.doi.org/10.1016/S0011-9164(98)00128-3
[69] Sagiv, A., Semiat, R.et al. (2005). Backwash of RO spiralwound membranes. Desalination. 179:1.
https://dx.doi.org/10.1016/j.desal.2004.11.050
[70] Tarazaga, C.C., Campderros, M.E., Padilla, P.E. et al. (2006). Physical cleaning by means of electric field in the ultrafiltration of a biological solution. J. Membr. Sci. 278:219.
https://dx.doi.org/10.1016/j.memsci.2005.11.004
[71] Ulbricht, M., Ridel, M., Marx, U. et al. (1996). Novel photochemical surface functionalization of polysulfone ultrafiltration membranes for covalent immobilization of Biomolecules. J. Membr. Sci. 120:239.
https://dx.doi.org/10.1016/0376-7388(96)00148-2
[72] Rahimpour, A., Madaeni, S.S. (2007).Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and anti-fouling properties. J. Membr. Sci. 305: 299.
https://dx.doi.org/10.1016/j.memsci.2007.08.030
[73] Bequet, S., Remigy, J.-C., Rouch, J.C., Espenan, J.-M., Clifton, M., Aptel, P.et al. (2002).From ultrafiltration to nanofiltration hollow fiber membranes: a continuous UV photografting process. Desalination 144:9.
https://dx.doi.org/10.1016/S0011-9164(02)00281-3
[74] Zhao, Z.P., Li, J., Zhang, D.X., Chen, C.X. et al. (2004).Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma. I. Graft of acrylic acid in gas. J. Membr. Sci. 232:1.
https://dx.doi.org/10.1016/j.memsci.2003.11.009
[75] Qiu, C., Xu, F., Nguyen, Q.T., Ping, Z.et al. (2005).Nanofiltrationmembrane prepared fromcardo polyetherketone ultrafiltration membrane by UV induced grafting method. J.Membr. Sci. 255:107.
https://dx.doi.org/10.1016/j.memsci.2005.01.027
[76] Zhao, Y.H., Zhu, B.K., Kong, L., Xu, Y.Y.et al. (2007). Improving hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer. Langmuir. 23:5779–5786.
https://dx.doi.org/10.1021/la070139o
[77] Mackay, M.E., Carmezini, G. (2002).Manipulation of hyperbranched polymers’ conformation. Chem. Mater. 14: 819–825.
https://dx.doi.org/10.1021/cm010623r
[78] Miyauchi, M., Tokudome, H. (2007).Super-hydrophilic and transparent thin films of TiO2 nanotube arrays by a hydrothermal reaction. J. Mater. Chem. 17: 2095–2100.
https://dx.doi.org/10.1039/b700387k
[79] Song, S., Jing, L., Li, S., Fu, H., Luan, Y.et al. (2008).Superhydrophilic anatase TiO2 film with the micro- and nanometer-scale hierarchical surface structure. Mater. Lett. 62: 3503–3505.
https://dx.doi.org/10.1016/j.matlet.2008.03.005
[80] Nakajima, A., Koizumi, S., Watanabe, T., Hashimoto, K.et al. (2000). Photoinduced amphiphilic surface on polycrystalline anatase TiO2 thin films. Langmuir. 16:7048–7050.
https://dx.doi.org/10.1021/la0004348
[81] Yu, J., Zhao, X., Zhao, Q.et al. (2000).Effects of surface morphology of photocatalytic porous TiO2 thin films on hydrophilicity. J.Chin. Ceram. Soc. 3: 245.
[82] Garp, O., Huisman, C.L., Reller, A.et al. (2004). Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32: 33–177.
https://dx.doi.org/10.1016/j.progsolidstchem.2004.08.001
[83] Langlet, M., Permpoona, S., Riassetto, D., Berthome, G., Pernot, E., Joud, J.C.et al. (2006).Photocatalytic activity and photo-induced superhydrophilicity of sol–gel derived TiO2 films. J. Photochem. Photobiol. A. 181: 203–214.
https://dx.doi.org/10.1016/j.jphotochem.2005.11.026
[84] Fujishima, A., Rao, T.N., Tryk, D.A.et al. (2000).TiO2 photocatalysts and diamond electrodes. Electrochim. Acta 45:4683–4690.
https://dx.doi.org/10.1016/S0013-4686(00)00620-4
[85] Wang, K., Zhang, J., Lou, L., Yang, S., Chen, Y.et al. (2004).UV or visible light induced photodegradation of AO7 on TiO2 particles: the influence of inorganic anions. J. Photochem. Photobiol. A 165 201–207.
https://dx.doi.org/10.1016/j.jphotochem.2004.03.025
[86] Mills, A., Elliott, N., Parkin, I.P., O’Neill, S.A., Clark, R.J.et al. (2002).Novel TiO2 CVD films for semiconductor photocatalysis. J. Photochem. Photobiol. A 151:171–179.
https://dx.doi.org/10.1016/S1010-6030(02)00190-9
[87] Guan, K. (2005).Relationship between photocatalytic activity, hydrophilicity and selfcleaning effect of TiO2/SiO2 films. Surf. Coat. Technol. 191:155–160.
https://dx.doi.org/10.1016/j.surfcoat.2004.02.022
[88] Madaeni, S.S., Ghaemi, N., Alizadeh, A., Joshaghani, M.et al. (2011). Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes. Applied Surface Science 257:6175–6180.
https://dx.doi.org/10.1016/j.apsusc.2011.02.026
[89] Emadzadeh, D., Lau, W.J. ., Matsuura, T., Rahbari-Sisakht, M., Ismail, A.F.et al. (2014). A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chemical Engineering Journal 237: 70–80.
https://dx.doi.org/10.1016/j.cej.2013.09.081
[90] Bae, Tae-Hyun., Kim, In-Chul., Tak, Tae-Moon. et al. (2006). Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes. J. Membr. Sci. 275:1–5.
https://dx.doi.org/10.1016/j.memsci.2006.01.023
[91] Bae, T.H., Tak, T.M. (2005). Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system. J. Membr. Sci. 266:1–5.
https://dx.doi.org/10.1016/j.memsci.2005.08.014
[92] Bae, T.H., Tak, T.M. (2005). Effect of TiO2 nanoparticles on fouling mitigation of ltrafiltration membranes for activated sludge filtration. J. Membr. Sci. 249:1–8.
https://dx.doi.org/10.1016/j.memsci.2004.09.008
[93] Emadzadeh, D., Lau,W.J., Matsuura, T., Ismail, A.F., Rahbari-Sisakht, M.et al. (2014) Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. Journal of Membr. Sci. 44: 974–85.
https://dx.doi.org/10.1016/j.memsci.2013.08.014
[94] Sunada, K., Kikuchi, Y., Hashimoto, K., Fujishima, A. et al. (1998).Bactericidal and detoxification effects of TiO2 thin film Photocatalysts. Environ. Sci. Technol. 32:726.
https://dx.doi.org/10.1021/es970860o
[95] Brading, M.G., Jass, J., Lappin-Scott, H.L. et al. (1995).Dynamics of bacterial biofilm formation. in: M.L.-S. Hilary, J.W. Costerton (Eds.), Microbial Biofilms, Cambridge University Press, NewYork, NY, pp. 46–63.
https://dx.doi.org/10.1017/cbo9780511525353.004
[96] Damodar, R.A., You, S., Chou, H.et al. (2009).Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater. 172: 1321–1328.
https://dx.doi.org/10.1016/j.jhazmat.2009.07.139
[97] Alaoui, O. Tahiri., Nguyen, Q.T., Mbareck, C., Rhlalou, T.et al. (2009). Elaboration and study of poly (vinylidene fluoride) – anatase TiO2 composite membranes in photocatalytic degradation of dyes. Appl. Catal. A Gen. 358: 13–20.
https://dx.doi.org/10.1016/j.apcata.2009.01.032
[98] Yang, S., Gu, J.S., Yu, V., Zhou, J., Li, S.F., Wu, X.M., Wang, L. et al. (2011).Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor. Sep. Purif. Technol. 83:157–165.
https://dx.doi.org/10.1016/j.seppur.2011.09.030
[99] Dzinun, H., Othman, M.H.D., Ismail, A.F., Puteh, M.H.et al. (2015).Photocatalytic degradation of nonylphenol by immobilized TiO2 in dual layer hollow fibre membranes. Chem. Eng. J. 269: 255–261.
https://dx.doi.org/10.1016/j.cej.2015.01.114
[100] Song, H., Shao, J., Hea, Y., Liu, B., Zhong, X.et al.(2012).Natural organic matter removal and flux decline with PEG–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. J. Membr. Sci. 405–406:48–56.
https://dx.doi.org/10.1016/j.memsci.2012.02.063
[101] Leong, Sookwan., Razmjou, Amir., Wang, Kun., Hapgood, Karen., Zhang, Xi wang.et al. (2014). TiO2 based photocatalytic membranes. Huanting Wang Journal of Membr. Sci. 472:167–184 16 17.
[102] You, S.J., Semblante, G.U., Lu, S.C., Damodar, R.A., Wei, T.C.et al. (2012). Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2. J. Hazard. Mater. 237–238:10–19.
https://dx.doi.org/10.1016/j.jhazmat.2012.07.071
[103] Garp, O., Huisman, C.L., Reller A. et al. (2004) Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 : 33–177.
https://dx.doi.org/10.1016/j.progsolidstchem.2004.08.001
[104] Madaeni, S.S., Ghaemi, N. (2007) Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J. of Membr. Sci. 303: 221–233
https://dx.doi.org/10.1016/j.memsci.2007.07.017