Polyacrylamide Grafted Alginic Acid Copolymer Based Programmable Adhesive
Rahul Rahul, Priti Rani, Dipti Thakur, Gautam Sen, Dhaneshwar Mahto
In this study, aqueous microwave assisted methodology was utilized to synthesize alginic acid grafted polyacrylamide. The synthesis was optimized by varying acrylamide and ceric ammonium nitrate concentrations in order to get an optimum failure shear load. The structural, thermal and physicochemical changes of alginic acid and its graft copolymers were ascertained with the aid of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), intrinsic viscosity measurement, number average molecular weight determination and elemental analysis (C, H, N & O). The applicability of the synthesized graft copolymer as programmable adhesive has been studied by fabricating a single lap joint of two wooden blocks using an aqueous paste of the graft copolymer as adhesive. After curing, the breaking point of the joint was determined using a universal testing machine (UTM).
Keywords
Alginic Acid, Adhesive, Microwave Assisted Synthesis, Graft Copolymer
Published online 11/1/2016, 17 pages
DOI: https://dx.doi.org/10.21741/9781945291098-7
Part of New Polymeric Composite Materials
References
[1] P. Malkaj, E. Pierri, E. Dalas, The crystallization of hydroxyapatite in the presence of sodium alginate, Journal of Materials Science: Materials in medicine, 16 (2005) 733β737.
https://dx.doi.org/10.1007/s10856-005-2610-9
[2] H. Ertesvag, S. Valla, Biosynthesis and applications of alginates, Polymer Degradation Stability, 59 (1998) 85β91.
https://dx.doi.org/10.1016/S0141-3910(97)00179-1
[3] F.A. Johnson, D.Q.M. Craig, A.D. Mercer, Characterization of the block structure and molecular weight of sodium alginates, Journal of Pharmacy and Pharmacology, 49 (1997) 639β643.
https://dx.doi.org/10.1111/j.2042-7158.1997.tb06085.x
[4] F.G. Fischer, H. DΓΆrfel, Polyuronic acids in brown algae, Hoppe Seylers Z Physiological Chemistry, 302 (1955) 186β203.
https://dx.doi.org/10.1515/bchm2.1955.302.1-2.186
[5] W.L. Nelson, L.H. Cretcher, The alginic acid from Macrocystis Pyrifera, Journal of American Chemical Society, 51 (1929) 1914β1922.
https://dx.doi.org/10.1021/ja01381a045
[6] W.H. McNeely, D.J. Pettit, Algin, in: R.L. Whistler (Ed.), Industrial gums, Academic Press, New York, 1973, pp. 49β81.
https://dx.doi.org/10.1016/B978-0-12-746252-3.50009-5
[7] K.I. Darget, O. Smidsrod, G. SkjΓ k-BrΓ¦k, Alginate from algae, in: A. SteinbΓΌchel, & S.K. Rhee (Eds.), Polysaccharide and Polyamides in the food Industry, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2005, pp. 1β30.
https://dx.doi.org/10.1002/3527600035.bpol6008
[8] R.L. Patrick, Treatise on adhesion and adhesives (Vol. 2), Marcel Dekker, New York, 1969.
[9] D. Wilson, H.D. Stenzenberger, P.M. Hergenrother, Polyimides, Chapman and Hall, New York, 1990.
https://dx.doi.org/10.1007/978-94-010-9661-4
[10] G. Goud, R.N. Rao, The effect of alkali treatment on dielectric properties of Roystonearegia/epoxy composites, International Journal of Polymer Analysis and Characterization, 16 (2011) 239β250.
https://dx.doi.org/10.1080/1023666X.2011.570039
[11] B. Siroka, J. Siroky, T. Bechtold, Application of ATR-FT-IR single-fiber analysis for the identification of a foreign polymer in textile matrix, International Journal of Polymer Analysis and Characterization, 16 (2011) 259β268.
https://dx.doi.org/10.1080/1023666X.2011.570066
[12] A.J. Kinloch, Adhesion and adhesives, Science and technology, Chapman and Hall, London, 1987.
https://dx.doi.org/10.1007/978-94-015-7764-9
[13] A.J. Kinloch, Adhesive in engineering, Proceedings of institution of mechanical engineering, Journal of Aerospace Engineering, 211 (1997) 307β335.
[14] Z.Y. Zhang, Z.Z. Dong, C.F. Xiao, Estimation of ethyl cellulose layer thickness of coated polyethylene oxide particles using differential scanning calorimetry, International Journal of Polymer Analysis and Characterization, 18 (2013) 25β29.
https://dx.doi.org/10.1080/1023666X.2012.719115
[15] R.P.V Atluri, K.M. Rao, A.V.S.K.S. Gupta, Experimental investigation of mechanical properties of golden cane fiber-reinforced polyester composites, International Journal of Polymer Analysis and Characterization, 18 (2013)30β39.
https://dx.doi.org/10.1080/1023666X.2013.745679
[16] A. Chandramohan, M. Alagar, Preparation and characterization of cyclohexyl moiety toughened POSS-reinforced epoxy nanocomposites, International Journal of Polymer Analysis and Characterization, 18 (2013) 73β81.
https://dx.doi.org/10.1080/1023666X.2013.747253
[17] R. Rahul, S. Kumar, U. Jha, G. Sen, Cationic inulin: A plant based natural biopolymer for algal biomass harvesting, International Journal of Biological Macromolecules, 72 (2015) 868β874.
https://dx.doi.org/10.1016/j.ijbiomac.2014.09.039
[18] J. Zhao, C. Xiao, N. Xu, Surface and physical mechanical properties of polypropylene/poly(butyl methacrylate-co-hydroxyethylmethacrylate) blend fiber, International Journal of Polymer Analysis and Characterization, 17 (2012) 557β567.
https://dx.doi.org/10.1080/1023666X.2012.704557
[19] S. Mallakpour, A. Zadehnazari, New organosoluble thermally stable and nanostructuredpoly(amide-imide)s with dopamine pendant groups: Microwave-assisted synthesis and characterization, International Journal of Polymer Analysis and Characterization, 17 (2012) 408β416.
https://dx.doi.org/10.1080/1023666X.2012.669646
[20] N. Niimura, Structural study of a Japanese lacquer film with thermogravimetry-linked scan mass spectrometry, International Journal of Polymer Analysis and Characterization, 17 (2012) 540β546.
https://dx.doi.org/10.1080/1023666X.2012.704560
[21] A.S Singha, V.K. Thakur, I.K. Mehta, A. Shama, A.J. Khanna, R.K. Rana, A.K. Rana, Surface modified Hibiscus sabdariffa fibers: Physicochemical, thermal and morphological properties evaluation, International Journal of Polymer Analysis and Characterization, 14 (2009) 695β711.
https://dx.doi.org/10.1080/10236660903325518
[22] X. Ren, M. Soucek, Soya based coatings and adhesives, in: R.P. Brentin, (Ed.), Soy-based chemicals and materials, ACS, 2014, pp. 207β254.
https://dx.doi.org/10.1021/bk-2014-1178.ch010
[24] K. Ramanaiah, A.V. Ratnaprasad, K. Hema, C. Reddy, Thermal and mechanical properties of sansevieria green fiber reinforcement, International Journal of Polymer Analysis and Characterization, 16 (2011) 602β608.
https://dx.doi.org/10.1080/1023666X.2011.622358
[25] V.K. Thakur, A.S. Singha, M.K. Thakur, Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites, International Journal of Polymer Analysis and Characterization, 62 (2013) 226β230.
https://dx.doi.org/10.1080/00914037.2011.641694
[26] S. Berdous, S.N. Amroun, M. Saidi, M. Bendaoud, Trapping effect on electrical behavior of polyester film: I. Unipolar injection, International Journal of Polymer Analysis and Characterization, 16 (2011) 416β430.
https://dx.doi.org/10.1080/1023666X.2011.596648
[27] D. Dallinger, C.O. Kappe, Microwave-assisted synthesis in water as solvent. Chemical Review, 107 (2007) 2563β2591.
https://dx.doi.org/10.1021/cr0509410
[28] V. Polshettiwar, R.S. Varma, Aqueous microwave chemistry: Aclean and green synthetic tool for rapid drug discovery, Chemistry Society Review, 37 (2008) 1546β1557.
https://dx.doi.org/10.1039/b716534j
[29] Z. Yang, B. Yuan, X. Huang, J. Zhou, J. Cai, H. Yang, Evaluation of the flocculation performance of carboxymethylchitosan-g-polyacrylamide, A novel amphoteric chemically bonded composite flocculant, Water Research, 46 (2012) 107β114.
https://dx.doi.org/10.1016/j.watres.2011.10.024
[30] A.K. Sarkar, N.R. Mandre, A.B. Panda, S. Pal, Amylopectin grafted with poly(acrylic acid): Development and application of a high performance flocculant, Carbohydrate Polymers, 95 (2013) 753β759.
https://dx.doi.org/10.1016/j.carbpol.2013.03.025
[31] R. Rahul, U. Jha, G. Sen, S. Mishra, A novel polymeric flocculant based on polyacrylamide grafted inulin: Aqueous microwave assisted synthesis, Carbohydrate Polymers, 99 (2014) 11β21.
https://dx.doi.org/10.1016/j.carbpol.2013.07.082
[32] C.R. Frihart, Adhesive bonding and performance testing of bonded wood products, Journal of ASTM International, 2 (2005) 1β7.
https://dx.doi.org/10.1520/JAI12952