Application of Bioactive Composite Green Polymer for the Development of Artificial Organs
Arijit Nath, Tiyasha Kanjilal, Chiranjib Bhattacharjee
Presently, the concept of ‘Green Chemistry for Sustainable Development’ is a guiding source for development of next generation materials, known as composite green polymers. Green composite polymers are used for development of hard tissue implants, such as, artificial bone, spine instrumentation, knee hip replacement and bone cement etc. Moreover green composite polymers are used for soft tissue replacements and implantations, such as, ureter prosthesis, catheters, vascular grafts, tendons and ligaments instead of conventional metal alloy and ceramic. The present chapter represents various applications of green composite polymers in medical technology with special interest on development of artificial organs.
Keywords
Composite green Polymer, Artificial organs, Hard tissue applications, Soft cell and cartilage, Prosthetic limbs
Published online 11/1/2016, 39 pages
DOI: https://dx.doi.org/10.21741/9781945291098-2
Part of New Polymeric Composite Materials
References
[1] F.R.F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct. 92 (2010) 2793–2810.
https://dx.doi.org/10.1016/j.compstruct.2010.05.003
[2] T. Huber, J. Müssig, O. Curnow, S. Pang, S. Bickerton, M.P. Staiger, A critical review of all-cellulose composites. J. Mater. Sci. 2011, 47, 1171-1186.
https://dx.doi.org/10.1007/s10853-011-5774-3
[3] O. Faruk, A.K. Bledzki, H.P. Fink, M. Sain, Biocomposites reinforced with natural fibers (2000–2010). Prog. Polymer Sci. 37(11) (2012) 1552-1596.
https://dx.doi.org/10.1016/j.progpolymsci.2012.04.003
[4] A. Baptista, F. Isabel, J.P. Borges, Cellulose-based composite systems for biomedical applications, Biomass based Biocomposites. UK: Smithers Rapra Technology. (2013) 47-60.
[5] M. Wang, Developing bioactive composite materials for tissue replacement. Biomaterials. 24(13) (2003) 2133–2151.
https://dx.doi.org/10.1016/S0142-9612(03)00037-1
[6] P.M.M. Dicker, P.F. Duckworth, A.B. Baker, G. Francois, M.K. Hazzard, P.M. Weaver, Green composites: A review of material attributes and complementary applications. Compos. Part A – Appl. S. 56 (2014) 280–289.
[7] S. Ramakrishna, J. Mayer, E. Wintermantel, K.W. Leong, Biomedical applications of polymer-composite materials: a review. Comp. Sci. Tech. 61(9) (2001) 1189-1224.
https://dx.doi.org/10.1016/S0266-3538(00)00241-4
[8] H.P.S.A. Khalil, A.H. Bhat, A.F.I. Yusra, Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 87 (2012) 963– 979.
https://dx.doi.org/10.1016/j.carbpol.2011.08.078
[9] K.G. Satyanarayana, G.G.C. Arizaga, F. Wypych, Biodegradable composites based on lignocellulosic fibers – An overview. Progr. Polym. Sci. 34(9) (2009) 982–1021.
https://dx.doi.org/10.1016/j.progpolymsci.2008.12.002
[10] I. Van de Weyenberg, T. Chi Truong, B. Vangrimde, I. Verpoest, Improving the properties of UD flax fibre reinforced composites by applying an alkaline fiber treatment. Compos. Part A-Appl. S. 37 (2006) 1368–1376.
[11] L. Ambrosio, P.A.Netti, S.Iannace, S.J. Huang, L. Nicolais, Composite hydrogels for intervertebral disc prostheses. J. Mater.Sci: Mater. M. 7(5) (1996) 251-254.
https://dx.doi.org/10.1007/BF00058561
[12] H.C. Amstutz, P. Campbell, N. Kossovsky, I.C. Clartk, Mechanism and clinical significance of wear debris-induced osteolysis. Clin. Orthop. Relat. Res. 276 (1992) 7-18.
https://dx.doi.org/10.1097/00003086-199203000-00003
[13] G.B.J. Andersson, Intervertebral disk, in: V. Wright, E.L.Radin (Eds.), Mechanics of human joints: physiology, pathophysiology, and treatment. Marcel Dekker Inc., New York (1993) pp. 293-311.
[14] Layth Mohammed, M. N. M. Ansari, Grace Pua, Mohammad Jawaid, M. Saiful Islam, A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polymer Sci. 2015 (2015), 1-15.
https://dx.doi.org/10.1155/2015/243947
[15] F.P. La Mantia, M. Morreale, Green composites: A brief review. Compos. Part. A-Appl. S. 42(6) (2011) 579–588.
[16] A.K. Mohanty, M.Misra, L.T. Drzal, Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. J. Polym. Sci. Environ. 10(1) (2002) 19–26.
https://dx.doi.org/10.1023/A:1021013921916
[17] H.P.S. Abdul Khalil, H. Ismail, M.N. Ahmad, A. Ariffin, K. Hassan, Conventional agro-composites from chemically modified fibres. Ind. Crop. Prod. 26(3) (2007) 315-353.
https://dx.doi.org/10.1016/j.indcrop.2007.03.010
[18] H.P.S. Abdul Khalil, R.N. Kumar, S.M. Asri, N.A. Nik Fuaad, M.N. Ahmad, Hybrid thermoplastic pre-preg oil palm frond fibers (OPF) reinforced in polyester composites. Polym-Plast. Technol. 46(1) (2007) 43–50.
[19] H.P.S. Abdul Khalil, S. Hanida, S.C.W. Kang, N.A. Nik Fuaad, Agro-hybrid composite: The effects on mechanical and physical properties of oil palm fiber (EFB)/glass hybrid reinforced polyester composites. Polym-Plast. Technol. 46(1) (2007)203–218.
[20] S. Ramakrishna, Biomedical applications of polymer composite materials,in: C.S. Hong, C.S. Kim (Eds.), Proc. of the second Asian-Australasian Conference on Composite Materials (ACCM-2000). Advanced Institute of Science and Technology, Korea, (2000) pp. A431-A436.
[21] L.M. Wenz, K. Merritt, S.A. Brown, A. Moet, A.D. Steffee, In vitro biocompatibility of polyetheretherketone and polysulfone composites. J. Biomed. Mater. Res. 24(2) (1990) 207-215.
https://dx.doi.org/10.1002/jbm.820240207
[22] G.B. McKenna, G.W. Bradley, H.K. Dunn, W.O.Statton, Mechanical properties of some fiber reinforced polymer composites after implantation as fracture fixation plates. Biomaters. 1(4) (1980) 189-192.
https://dx.doi.org/10.1016/0142-9612(80)90015-0
[23] L.A. Latour Jr., J. Black, Development of FRP composite structural biomaterials: Ultimate strength of the fiber/matrix interfacial bond in in vivo simulated environments. J. Biomed. Mater. Res. 26(5) (1992) 593-606.
https://dx.doi.org/10.1002/jbm.820260504
[24] B. Harris, The mechanical behavior of composite materials, The Mechanical Properties of Biological Materials, Cambridge University Press, Cambridge, (1980) pp. 37-74.
[25] S.R. Lee, H.M. Park, H.T. Lim, K.Y. Kang, L. Li, W.J. Cho, C.S. Ha, Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer. 43(8) (2002) 2495–2500.
https://dx.doi.org/10.1016/S0032-3861(02)00012-5
[26] T.W. Lin, A.A. Corvelli, C.G. Frondoza, J.C. Roberts, D.S. Hungerford, Glass peek composite promotes proliferation and osteo-calcin production of human osteoblastic cells. J. Biomed. Mater. Res. 36(2) (1997) 137-144.
https://dx.doi.org/10.1002/(SICI)1097-4636(199708)36:2<137::AID-JBM1>3.0.CO;2-L
[27] G.W. Hastings, Biomedical applications of CFRPs, in: E.Fitzer (Ed.), Carbon Fibre and their Composites. Springer-Verlag, Berlin, (1988) pp. 261-271.
[28] K. Tayton, J. Bradley, How stiff should semi-rigid fixation of the human tibia be?, J. Bone. Joint Surg. Br. 65(3) (1983) 312-315.
[29] A.E. Profio, Biomedical Engineering, John Wiley & Sons Inc. New York, 1993.
[30] J. Black, Orthopaedic Biomaterials in Research and Practice, Churchill Livingstone. New York, 1988.
[31] D. Philips, Characterization and development of 3D-knitted composites, PhD thesis, Katholieke University Leuven, Belgium, 1999.
[32] K.P. Baidya, S. Ramakrishna, M. Rahman, A. Ritchie, Advanced textile composite ring for ilizarov external fixator system. Proc Inst Mech Eng H. 215(1) (2001) 11-23.
https://dx.doi.org/10.1243/0954411011533490
[33] K.P. Baidya, S. Ramakrishna, M. Rahman, A. Ritchie, Quantitative radiographic analysis of fiber reinforced polymer composites. J. Biomater. Appl. 15(3) (2001) 279-289.
https://dx.doi.org/10.1106/BKLQ-E2YG-D2LA-RG3R
[34] E.Y.S. Chao, H.T. Aro, Biomechanics of fracture fixation, in: V.C. Mow, W.C. Hayes (Eds). Basic Orthopaedic Biomechanics, Lippincott-Raven, Philadelphia (1997) pp. 317-350.
[35] M.S. Ali, T.A. French, G.W. Hastings, T. Rae, N. Rushton, E.R. Ross, C.H. Wynn-Jones, Carbon fibre composite bone plates. Development, evaluation and early clinical experience. J Bone Joint Surg Br. 1990 72(4) 586-591.
[36] J.S. Bradley, Carbon fiber reinforced plastics for orthopedic implants, in: G.W. Hastings, D.F. Williams, (Eds.), Mechanical properties of biomaterials, Wiley, Chichester, New York, (1980) pp. 379-386.
[37] G.B. McKenna, G.W. Bradley, H.K. Dunn, W.O. Statton, Mechanical properties of some fiber reinforced polymer composites after implantation as fracture fixation plates. Biomaterials. 1: (1980) 189-192.
https://dx.doi.org/10.1016/0142-9612(80)90015-0
[38] J. Suwanprateeb, K.E. Tanner, S. Turner, W. Bonfield, Influence of sterilization by gamma irradiation and of thermal annealing on creep of hydroxyapatite-reinforced polyethylene composites. J. Biomed. Mater. Res. 39(1) (1998) 16–22
https://dx.doi.org/10.1002/(SICI)1097-4636(199801)39:1<16::AID-JBM3>3.0.CO;2-L
[39] S.L.Y. Woo, W.H. Akeson, B. Levenetz, R.D. Coutts, J.V. Matthews, D. Amiel, Potential application of graphite fiber and methyl methacrylate resin composites as internal fixation plates. J. Biomed. Mater. Res. 8(5) (1974) 321-338.
https://dx.doi.org/10.1002/jbm.820080513
[40] P. Christel, J.L. Leray, L. Sedel, E. Morel, Mechanical evaluation and tissue compatibility of materials for composite bone plates, in: G.W. Hastings, D.F. Williams (Eds.), Mechanical Properties of Biomaterials,Wiley, New York, (1980) pp. 367-377.
[41] L. Claes, W. Hutter, R. Weiss, Mechanical properties of carbon fiber reinforced polysulfone plates for internal fixation, in: P. Christel, A.Meunier, A.J.C. Lee (Eds.), Biological and Bio-mechanical Performance of Biomaterials,The Netherlands: Elsevier Science Publishers, Amsterdam, (1997) pp. 81-86.
[42] M.S. Hunt, Development of carbon fiber/polysulfone orthopaedic implants, Mat. Des. 8(2) (1987) 113-119.
https://dx.doi.org/10.1016/0261-3069(87)90117-8
[43] W. Huttner, G.Keuscher, M.Nietert, Carbon fiber reinforced polysulfone thermoplastic composites,in: P. Ducheyne, G. Van der Perre, A.E. Aubert (Eds.), Biomaterials and Biomechanics,The Netherlands: Elsevier Science Publishers, Amsterdam, (1984) pp. 167-172.
[44] N. Rushton, T. Rae, The intra-articular response to particulate carbon fiber reinforced high density polyethylene and its constituents: an experimental study in mice. Biomaterials. 5(6) (1984) 352-356.
https://dx.doi.org/10.1016/0142-9612(84)90034-6
[45] N. Gillett, S.A. Brown, J.H. Dumbleton, R.P. Pool, The use of short carbon fiber reinforced thermoplastic plates for fracture fixation. Biomaterials. 6 (1985) 113-121.
https://dx.doi.org/10.1016/0142-9612(85)90074-2
[46] K.A. Jockisch, S.A. Brown, T.W. Bauer, K. Merritt, Biological response to chopped-carbon-fiber-reinforced peek, J. Biomed. Mater. Res. 26(2) (1992) 133-146.
https://dx.doi.org/10.1002/jbm.820260202
[47] K.B. Kwarteng, C. Stark, Carbon fiber reinforced PEEK (APC-2/ AS4) composites for orthopedics implants. SAMPE Quarterly. 21(2) (1990) 10-14.
[48] J. Mayer, K. Ruffieux, B. Koch, E. Wintermantel, T. Schulten, A. Hatebur, The double die technique (DDT): biomaterials processing for adaptable high fatigue resistance thermoplastic carbon fiber osteosynthesis plates, J. Biomed. Eng. App. Bas. C. 5 (1993) 778-783.
[49] T. Peter, R. Tognini, J. Mayer, E. Wintermantel, Homoelastic, anisotropic osteosynthesis system by net-shape processing of endless carbon fiber reinforced polyetheretherketone (PEEK),in: J.C.H. Goh, A. Nather (Eds.), Proc. of 9th Conference on Biomedical Engineering, Singapore, National University of Singapore, (1997) pp. 317-319.
[50] D.F. Williams, Consensus and definitions in biomaterials,in: C. de Putter, K. de Lange, K. de Groot, A.J.C. Lee (Eds.), Advances in Biomaterials, Elsevier Science, Amsterdam, (1988) pp. 11-16.
[51] F.N. Cogswell, Thermoplastic Aromatic Polymer Composites, Butterworth Heinemann, UK, 1992.
https://dx.doi.org/10.1533/9781845699253
[52] J. Mayer, Gestrickeaus Kohlenstoffasern fur biokompatibleVerbundwerkstoffe, dargestellt an einerhomoelastischen Osteosyntheseplatte, PhD thesis, ETH Zurich, Switzerland, 1994.
[53] P. Christel, L.Claes, S.A. Brown, Carbon reinforced composites in orthopedic surgery, in: M. Szycher (Eds.), High Performance Biomaterials: A Comprehensive Guide to Medical and Pharmaceutical Applications, Technomic, Lancaster, (1991) pp. 499¬518.
[54] C. Morrison, R. Macnair, C. MacDonald, A. Wykman, I. Goldie, M.H. Grant, In vitro biocompatibility testing of polymers for orthopedic implants using cultured fibroblasts and osteoblasts, Biomaterials. 16(13) (1995) 987-992.
https://dx.doi.org/10.1016/0142-9612(95)94906-2
[55] J. Mayer, E. Wintermantel, Thermoforming process for knitted fabric reinforced thermoplastics. New manufacturing techniques for load bearing anisotropic implants. In: Bhattacharyya D, (Eds.) Composite Sheet Forming. Amsterdam: Elsevier Science, (1997) pp. 403-40.
https://dx.doi.org/10.1016/S0927-0108(97)80012-4
[56] S. Blazewicz, J. Chlopek, A. Litak, C. Wajler, E. Staszkow, Experimental study of mechanical properties of composite carbon screws, Biomaterials. 18(5) (1997) 437-439.
https://dx.doi.org/10.1016/S0142-9612(96)00067-1
[57] U. Loher, R. Tognini, J. Mayer, B. Koch, E. Wintermantel, Development of a cortical bone screw made with endless carbon fiber reinforced Polyetheretherketone (CF-PEEK) by extrusion. A new method,in: The Institute of Materials,7th international conference on polymers in medicine and surgery, Amsterdam, (1993) pp 88-97.
[58] R. Giardino, S. Glannini, M. Fini, G. Giavaresi, L. Martini, L. Orienti, Experimental in vivo model to evaluate resorable implants into bone,in: H.L. Kim, L.P. Chung (Eds.), Biodegradable Implants in Fracture Fixation, (1993) pp. 143-51.
[59] P. Tormala, J. Vasenius, S. Vainionpaa, J. Laiho, T. Pohjonen, P. Rokkanen, Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: In vitro and in vivo study. J. Biomed. Mater. Res. 25(1) (1991) 1-22.
https://dx.doi.org/10.1002/jbm.820250102
[60] J. Choueka, J.L. Charvet, H. Alexander, Y.H. Oh, G. Joseph, N.C. Blumenthal, W.C. LaCourse, Effect of annealing temperature on the degradation of reinforcing fibers for absorbable implants, J. Biomed. Mater. Res. 29(11) (1995) 1309-1315.
https://dx.doi.org/10.1002/jbm.820291102
[61] C. Scholz, D. Huimacher, W. Bahr, L. Cales, The development and testing of three biodegradable screw plate-systems for maxillofacial surgery,in: H.L. Kim, L.P. Chung (Eds.), Biodegradable Implants in Fracture Fixation, (1993) pp. 67-73.
[62] M. Dauner, L. Caramaro, Y. Missirlis, E. Panagiotopoulos, Resorable continuous-fiber reinforced polymers for osteo-synthesis. J. Mater. Sci.: Mater. in Med. 9(3) (1998) 173-179.
https://dx.doi.org/10.1023/A:1008823804460
[63] A. Nazre, S. Lin, Theoretical strength comparison of bioabsorbable (PLLA) plates and conventional stainless steel and titanium plates used in internal fracture fixation, in: J.P. Harvey Jr., F. Games (Eds.), Clinical and Laboratory Performance of Bone Plates, ASTM, Philadelphia, (1994) pp. 53-64.
https://dx.doi.org/10.1520/STP12221S
[64] J.R. Parsons, A. Alexander, A.B. Weiss, Absorbable polymer-filamentous carbon composites: a new concept in orthopedic biomaterials. In: M. Szycher (Eds.) Biocompatible Polymers, Metals, and Composites. Lancaster: Technomic Publishing Co. Inc, (1983) pp. 873-905.
[65] P. Tormala, S. Vainionpaa, J. Kilpikari, P. Rokkanen, The effects of fiber reinforcement and gold plating on the flexural and tensile strength of PGA/PLA copolymer materials in vitro. Biomaterials. 8(1) (1987) 42-45.
https://dx.doi.org/10.1016/0142-9612(87)90027-5
[66] M. Zimmerman, J.R. Parsons, H. Alexander, The design and analysis of a laminated partially degradable composite bone plate for fracture fixation. J. Biomed. Mater. Res. 21(43) (1987) 345-361.
[67] J.S. Roman, P.G. Garcia, Partially biodegradable polyacrylic-polyester composites for internal bone fracture fixation. Biomaterials. 12 (1991) 236-241.
https://dx.doi.org/10.1016/0142-9612(91)90206-P
[68] L.R. Rubin Biomaterials in maxillo-facial surgery. In: Szycher M, editor. Biocompatible Polymers, Metals, and Composites. Lancaster, USA: Technomic Publishing, (1983) pp. 941-951.
[69] T.W. Lin, A.A. Corvelli, C.G. Frondoza, J.C. Roberts, D.S. Hungerford, Glass peek composite promotes proliferation and osteo-calcin production of human osteoblastic cells. J. Biomed. Mater. Res. 36(2) (1997) 37-144.
https://dx.doi.org/10.1002/(SICI)1097-4636(199708)36:2<137::AID-JBM1>3.0.CO;2-L
[70] J. Kettunen, A. Makela, H. Miettinen, T. Nevalainen, M. Heikkila, P. Tormala, P. Rokkanen, Fixation of femoral shaft osteotomy with an intramedullary composite rod: An experimental study on dogs with a two-year follow-up, J. Biomat. Sci. Polym. Ed. 10 (1999) 33-45.
[71] A. Ignatius, K. Unterricker, K. Wenger, M. Richter, L. Claes, A new composite made of polyurethane and glass ceramic in a loaded implant model: a biomechanical and histological analysis. J Mater Sci Mater Med. 8(12) (1997) 753-756.
https://dx.doi.org/10.1023/A:1018508511787
[72] L. Claes, M. Schultheiss, S. Wolf, H.J. Wilke, M. Arand, L. Kinzl, A new radiolucent system for vertebral body replacement: its stability in comparison to other systems. J Biomed Mater Res. 48(1) (1999) 82-89.
https://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:1<82::AID-JBM14>3.0.CO;2-E
[73] M. Marcolongo, P. Ducheyne, J. Garino, E. Schepers, Bioactive glass fiber/polymeric composites bond to bone tissue, J. Biomed. Mater. Res. 39(1) (1998) 161-170.
https://dx.doi.org/10.1002/(SICI)1097-4636(199801)39:1<161::AID-JBM18>3.0.CO;2-I
[74] A.D.C. Valdevit, N. Inoue, B.A. MacWilliams, L.L. Anderson, Methods for mechanical testing of spinal constructs. Spine. 10(2) (1996) 231-248.
[75] E. Wintermantel, A. Bruinink, K. Eckert, K. Ruffiex, M. Petitmermet, J. Mayer, Tissue engineering supported with structured biocompatible materials: goals and achievements,in: M.O. Speidel MO, P.J. Uggowitzer (Eds.), Materials in Medicine, vdfHochschulverlag AG an der ETH, Zurich, 1998, pp. 1-136.
[76] J.W. Brantigan, A.D. Steffee, J.M. Geiger, A carbon fiber implant to aid interbody lumbar fusion Mechanical testing, Spine (Phila Pa 1976). 16(6 Suppl) (1991) S277-82.
https://dx.doi.org/10.1097/00007632-199106001-00020
[77] P. Ciappetta, S. Boriani, G.P. Fava, A carbon fiber reinforced polymer cage for vertebral body replacement: a technical note. Neurosurgery. 41(5) (1997) 1203-6.
https://dx.doi.org/10.1097/00006123-199711000-00040
[78] Q.B. Bao, G.M. McCullen, P.A. Higham, J.H. Dumbleton, H.A. Yuan, The artificial disc: theory, design and materials, Neurosurgery. 41(5) (1997) 1203-1206.
[79] K.H.G. Schmitt-Thomas, Z.G. Yang, T. Hiermer, Performace characterization of polymeric composite implant rod subjected to torsion, in: Proceedings of ICCM-11, Gold Coast, Australia, (1997) pp. V277-V286.
[80] P.S. Walker, G.W. Blunn, Biomechanical principles of total knee replacement design,in: V.C. Mow, W.C. Hayes (Eds.), Basic Orthopaedic Biomechanics, Lippincott- Raven Publishers, Philadelphia (1997) pp. 461-93.
[81] N. Inoue, Y. Hirasawa, T. Hirai, T. Katayama, Composite materials in bio-medical engineering. Materiaux and Techniques 4-5 (1994) 23-26.
[82] C. Silverton, A.O. Rosenberg, R.M. Barden, M.B. Sheinkop, J.O. Galante, The prosthesis-bone interface adjacent to tibial components inserted without cement. J. Bone Joint Surg. Am. 78(3) (1996) 340-347.
[83] M. Deng, W. Shalaby, Properties of self-reinforced ultra-high-molecular weight polyethylene composites. Biomaterials. 18(9) (1997) 645-55.
https://dx.doi.org/10.1016/S0142-9612(96)00194-9
[84] J.O. Esslinger, E.J. Rutkowski, Studies on the skeletal attachment of experimental hip prostheses in the pygmy goat and the dog. J. Biomed. Mater. Res. 7(3) (1973) 187-193.
https://dx.doi.org/10.1002/jbm.820070312
[85] E. Sclippa, K. Piekarski, Carbon fiber reinforced polyethylene for possible orthopedic uses. J. Biomed. Mater. Res. 7(1) (1973) 59-70.
https://dx.doi.org/10.1002/jbm.820070105
[86] St. John KR. Applications of Advanced Composites in Orthopedic Implants. In: M. Szycher (Eds.) Biocompatible Polymers, Metals, and Composites. Lancaster: Technomic Publishing, (1983) pp. 861-871.
[87] N.C. Blumenthal, V. Cosma, W. Jaffe, S. Stuchin, A new technique for quantitation of metal particulates and metal reaction products in tissues near implants. J Applied Biomater. 5(3) (1994) 191-193.
https://dx.doi.org/10.1002/jab.770050303
[88] P.K. Buchert, B.K. Vaughn, T.H. Mallory, C.A. Engh, J.D. Bobyn, Excessive Metal Relase due to Loosening and Fretting of Sintered Particles on Porous-Coated Hip Prostheses. J. Bone Joint Surg. Am. 68(4) (1986) 606-609.
[89] E. Schneider, C. Kinast, J. Eulenberger, D. Wyder, G. Eskilsson, S.M. Perren, A comparative study of the initial stability of cementless hip prostheses. Clin Orthop Relat Res. 248 (1989) 200-209.
https://dx.doi.org/10.1097/00003086-198911000-00032
[90] P.S. Walker, D. Schneeweis, S. Murphy, P. Nelson, Strains and micromotions of press-fit femoral stem prostheses. J Biomech. 20(7) (1987) 693-702.
https://dx.doi.org/10.1016/0021-9290(87)90035-2
[91] H. Weinans, Mechanically induced bone adaptations around hip implants. PhD thesis. University of Nijmegen, Netherlands, 1991.
[92] L.A. Whiteside, The effect of stem fit on bone hypertrophy and pain relief in cementless total hip arthroplasty. Clin Orthop Relat Res. (247) (1989) 138-147.
https://dx.doi.org/10.1097/00003086-198910000-00023
[93] J.A. Simoes, A.T. Marques, G. Jeronimidis, Design of a controlled stiffness composite proximal femoral prosthesis. Compos Sci Technol. 60(4) (2000) 559–567.
https://dx.doi.org/10.1016/S0266-3538(99)00155-4
[94] F.K. Chang, J.L. Perez, J.A. Davidson, Stiffness and strength tailoring of a hip prostheses made of advanced composite materials, J: Biomed: Mater: Res. 24(7) (1990) 873-99.
https://dx.doi.org/10.1002/jbm.820240707
[95] M. Akay, N. Aslan, Numerical and experimental stress analysis of a polymeric composite hip joint prostheses. J. Biomed. Mater. Res. 31(2) (1996) 167-182.
https://dx.doi.org/10.1002/(SICI)1097-4636(199606)31:2<167::AID-JBM3>3.0.CO;2-L
[96] E. Wintermantel, J. Mayer, J. Blum, K.L. Eckert, P. Luscher, M. Mathey, Tissue engineering scaffolds using superstructures. Biomaterials. 17(2) (1996) 83-91.
https://dx.doi.org/10.1016/0142-9612(96)85753-X
[97] J.L. Goldner, J.R. Urbaniak, The clinical experience with silicone- Dacron metacarpophalangeal and interphalangeal joint prostheses. J. Biomed. Mater. Res. 7(3) (1973) 137-163.
https://dx.doi.org/10.1002/jbm.820070310
[98] S. Saha, S. Pal, Mechanical properties of bone cement: a review. J. Biomed. Material. Res. 18 (1984) 435-462.
https://dx.doi.org/10.1002/jbm.820180411
[99] C.R. Bragdon, S. Biggs, W.F. Mulroy, W.F. Kawate, W.H. Harris. Defects in the cement mantle: a fatal flaw in cemented femoral stems for THR. San Francisco: Society for Biomaterials, 1995.
[100] S.P. James, M. Jasty, J. Davies, H. Piehler, W.H. Harris, A fracto-graphic investigation of PMMA bone cement focusing on the relationship between porosity reduction and increased fatigue life. J. Biomed. Mater. Res. 6(5) (1992) 651-662.
https://dx.doi.org/10.1002/jbm.820260507
[101] W. Krause, R.S. Mathis, Fatigue properties of acrylic bone cements: Review of the literature. J. Biomed. Mater. Res. 22(A1 Suppl) (1988) 37-53.
[102] R. Feith, Side effects of acrylic cement, implanted to bone. Acta Orthop Scand Suppl. 1975;161:3-136.
[103] R.M. Pilliar, R. Blackwell, I. Macnab, H.U. Cameron, Carbon fiber-reinforced bone cement in orthopedic surgery. J Biomed. Mater. Res. 10 (1976) 893-906.
https://dx.doi.org/10.1002/jbm.820100608
[104] B. Pourdeyhimi, H.D. Wagner, Elastic and ultimate properties of acrylic bone cement reinforced with ultra-high-molecular-weight polyethylene fibers. J Biomed. Mater. Res. 23(1) (1989) 63-80.
https://dx.doi.org/10.1002/jbm.820230106
[105] L.D. Timmie Topoleski, P. Ducheyne, J.M. Cuckler, The fracture toughness of titanium-fiber-reinforced bone cement. J. Biomed. Mater. Res. 26(12) (1992) 1599-1617.
https://dx.doi.org/10.1002/jbm.820261206
[106] H.D. Wagner, D. Cohn, Use of high-performance polyethylene fibers as a reinforcing phase in poly(-methylmethacrylate) bone cement. Biomaterials, 10(2) 1989 139–141.
https://dx.doi.org/10.1016/0142-9612(89)90049-5
[107] J.M. Yang, P.Y. Huang, M.C. Yang, S.K. Lo, Effect of MMA-g-UHMWPE grafted fiber on mechanical properties of acrylic bone cement. J Biomed. Mater. Res. 38(4) (1997) 361-369.
https://dx.doi.org/10.1002/(SICI)1097-4636(199724)38:4<361::AID-JBM9>3.0.CO;2-M
[108] J.L. Gilbert, D.S. Ney, E.P. Lautenschlager, Self-reinforced com-posite poly(methyl methacrylate): static and fatigue properties. Biomaterials. 16(14) (1995) 1043-1055.
https://dx.doi.org/10.1016/0142-9612(95)98900-Y
[109] J. Tamura, K. Kawanabe, T. Yamamuro, T. Nakamura, T. Kokubo, S. Yoshihara, T. Shibuya, Bioactive bone cement: The effect of amounts of glass powder and histologic changes with time. J. Biomed. Mater. Res. 29(5) (1995) 551-559.
https://dx.doi.org/10.1002/jbm.820290502
[110] R. Lakes, Composite biomaterials. In: Bronzino JD (Eds.) The Biomedical Engineering Handbook. Bota Racon, Florida, USA: CRC Press, (1995) pp. 598-610.
[111] M. Okazaki, H. Ohmae, Mechanical and biological properties of apatite composite resins. Biomaterials. 9(4) (1988) 345-348.
https://dx.doi.org/10.1016/0142-9612(88)90031-2
[112] J.B. Park, R.S. Lakes, Biomaterials An Introduction. New York: Plenum Press, (1992) pp. 169-183.
https://dx.doi.org/10.1007/978-1-4757-2156-0
[113] T.N. Gerhart, R.L. Miller, S.J. Kleshinski, W.C. Hayes, In vitro characterization and biomechanical optimization of a biodegradable particulate composite bone cement. J. Biomed. Material. Res. 22(11) (1988) 1071-1082.
https://dx.doi.org/10.1002/jbm.820221110
[114] J.C. Knowles, G.W. Hastings, H. Ohta, S. Niwa, N. Boeree, Development of a degradable composite for orthopedic use: in vivo biomechanical and histological evaluation of two bioactive degradable composites based on the polyhydroxybutyrate polymer. Biomaterials. 1992;13(8):491-6.
https://dx.doi.org/10.1016/0142-9612(92)90099-A
[115] W. Bonfield, Composites for bone replacement. J. Biomed. Eng. 10(6) (1988) 522-526.
https://dx.doi.org/10.1016/0141-5425(88)90110-0
[116] W. Bonfield, M.D. Grynpas, A.E. Tully, J. Bowman, J. Abram, Hydroxyapatite reinforced polyethylene — a mechanically compatible implant material for bone replacement. Biomaterials. 2(3) (1981) 185-186.
https://dx.doi.org/10.1016/0142-9612(81)90050-8
[117] S. Deb, M. Wang, K.E. Tanner, W. Bonfield, Hydroxyapatite- polyethylene composites: effect of grafting and surface treatment of hydroxyapatite. J. Mater. Sci. Material in Med. 7(4) (1996) 191-193.
https://dx.doi.org/10.1007/BF00119729
[118] L.L. Hench, Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74(7) (1991) 1487-1510.
https://dx.doi.org/10.1111/j.1151-2916.1991.tb07132.x
[119] J. Suwanprateeb, K.E. Tanner, S. Turner, W. Bonfield, Influence of Ringer’s solution on creep resistance of hydroxyapatite reinforced polyethylene composites. J. Mater. Sci. Mater. Med. 8(8) (1997) 469-472.
https://dx.doi.org/10.1023/A:1018522025474
[120] D. Williams, Concise Encyclopedia of Medical and Dental Materials. Oxford, UK: Pergamon Press, 1990.
[121] Q. Liu, J.R. de Wijn, C.A. van Blitterwijk, Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix. J. Biomed. Mater. Res. 40(3) (1998) 490-497.
https://dx.doi.org/10.1002/(SICI)1097-4636(19980605)40:3<490::AID-JBM20>3.0.CO;2-M
[122] S. Hidaka, R.B. Gustilo, Refracture of bones of the forearm after plate removal. J. Bone Joint Surg. Am. 66(8) (1984) 1241-1243.
[123] L.M. Rodriguez-Lorenzo, A.J. Salinas, M. Vallet-Regi, J. San Roman, Composite biomaterials based on ceramic polymers. I. Reinforced systems based on Al2O3/PMMA/PLLA. J. Biomed. Mater. Res. 30(4) (1996) 515-522.
https://dx.doi.org/10.1002/(SICI)1097-4636(199604)30:4<515::AID-JBM10>3.0.CO;2-G
[124] C.C.P.M. Verheyen, J.R. de Wijin, C.A. van Blitterwijk, K. de Groot, Evaluation of hydroxyapatite/ poly(L-lactide) composites: mechanical behavior. J. Biomed. Mater. Res. 26(10) (1992) 1277-1296.
https://dx.doi.org/10.1002/jbm.820261003
[125] C.C.P.M. Verheyen, J.R. de Wijn, C.A. van Blitterwijk, K. de Groot, P.M. Rozing, Hydroxyapatite/poly(L-lactide) composites: an animal study on push-out strengths and interface histology. J. Biomed. Mater. Res. 27(4) (1993) 433-444.
https://dx.doi.org/10.1002/jbm.820270404
[126] Knowles JC, Hastings GW. In vitro and in vivo investigation of a range of phosphate glass-reinforced polyhydroxybutyrate- based degradable composites. J Materials Science: Materials in Medicine 1993;4:102-6.
https://dx.doi.org/10.1007/BF00120377
[127] C.P.A.T. Klein, H.B.M. van der Lubbe, K. de Groot, A plastic composite of alginate with calcium phosphate granules as implant material: an in vivo study. Biomaterials. 8(4) (1987) 308-310.
[128] K.C. Kennedy, T. Chen, R.P. Kusy, Behavior of photopolymerized silicate-glass-fiber-reinforced dimethacrylate composites subjected to hydrothermal ageing. J. Mater. Sci-Mater. M. 9(11) (1998) 651-660.
[129] W.R. Krause, S.H. Park, R.A. Straup, Mechanical properties of BIS-GMA resin short glass fiber composites. J. Biomed. Mater. Res. 23(10) (1989) 1195-1211.
https://dx.doi.org/10.1002/jbm.820231008
[130] E.P. Hoag, T.G. Dwyer, A comparative evaluation of three post and core techniques. J. Prosthet. Dent. 47(2) (1982) 177-181.
https://dx.doi.org/10.1016/0022-3913(82)90183-4
[131] P.E. Lovdahl, J.I. Nicholls, Pin-retained amalgam cores Vs cast- gold dowel-cores. J. Prosthet. Dent. 38(5) (1977) 507-514.
https://dx.doi.org/10.1016/0022-3913(77)90025-7
[132] K.C. Trabert, J.P. Cooney, The endodontically treated tooth, restorative concepts and techniques. Dent. Clin. North. Am. 28(4) (1984) 923-951.
[133] F. Issidor, P. Odman, K. Brondum, Intermitttent loading of teeth restored using prefabricated carbon fiber posts. Int. J. Prosthodont. 9(2) (1996) 131-136.
[134] A. Torbjorner, A. Karlsson, M. Syverud, A. Hensten-Pattersen, Carbon fiber reinforced root canal posts, mechanical properties and cytotoxic properties. Eur. J. Oral Sci. 104(5-6) (1996) 605-611.
https://dx.doi.org/10.1111/j.1600-0722.1996.tb00149.x
[135] D.G. Purton, J.A. Payne, Comparison of carbon fiber and stainless steel root canal posts. Quintessence. Int. 27(2) (1996) 93-97.
[136] V.K. Ganesh, S. Ramakrishna, H.J. Leck, Fiber reinforced composite based functionally gradient materials. Adv. Composites Lett. 7 (1998) 111-115.
[137] S. Ramakrishna, V.K. Ganesh, S.H. Teoh, P.L. Loh, C.L. Chew, Fiber reinforced composite product with graded stiffness. Singapore Patent Application No. 9800874-1, 1998.
[138] P.L. Loh, K. Ravi, U.K. Ganesh, S. Ramakrishna, C.L. Chew, Moisture absorption of carbon fiber reinforced posts. J. Dental Res. 79(5) (2000) 1317.
[139] D. Adams, D.F. Williams, J. Hill, Carbon fiber-reinforced carbon as a potential implant material. J. Biomed. Mater. Res. 12(1) (1978) 35-42.
https://dx.doi.org/10.1002/jbm.820120104
[140] H. Bruckmann, K.J. Huttinger, Carbon, a promising material in endoprosthetics. Part 1: the carbon materials and their mechanical properties. Biomaterials. 1(2) (1980) 67-72.
https://dx.doi.org/10.1016/0142-9612(80)90002-2
[141] H. Bruckmann, G. Keuscher, K.J. Huttinger, Carbon, a promising material in endoprosthetics. Part 2: tribological properties. Biomaterials. 1(2) (1980) 73-81.
https://dx.doi.org/10.1016/0142-9612(80)90003-4
[142] J.P. Louis, M. Dabadie, Fibrous carbon implants for the maintenance of bone volume after tooth avulsion: first clinical results. Biomaterials. 11(7) (1990) 525-528.
https://dx.doi.org/10.1016/0142-9612(90)90071-W
[143] N. More, C. Baquey, X. Barthe, F. Rouais, J. Rivel, M. Trinquecoste, A. Marchand, Biocompatibility of carbon-carbon materials: in vivo study of their erosion using 14carbon labeled samples. Biomaterials. 9(4) (1988) 332-334.
https://dx.doi.org/10.1016/0142-9612(88)90028-2
[144] J.D. Henderson, R.H. Mullarky, D.E. Ryan, Tissue biocompatibility of kevlar aramid fibers and polymethylmethacrylate, composites in rabbits. J. Biomed. Mater. Res. 21(1) (1987) 59-64.
https://dx.doi.org/10.1002/jbm.820210110
[145] V.M. Miettinen, P.K. Vallittu, Release of residual methyl metha-crylate into water from glass fiber-poly (methyl methacrylate) composite used in dentures. Biomaterials. 18(2) (1997) 181-5.
https://dx.doi.org/10.1016/S0142-9612(96)00123-8
[146] N. Bjork, K. Ekstrand, I.E. Ruyter, Implant-fixed, dental bridges from carbon/graphite fiber reinforced poly(methyl methacrylate). Biomaterials. 7(1) (1986) 73-75.
https://dx.doi.org/10.1016/0142-9612(86)90093-1
[147] K.W.M. Davy, S. Parker, M. Braden, I.M. Ward, H. Ladizesky, Reinforcement of polymers of 2,2 bis-4(2-hydroxy-3-methacry- loyloxy propoxy) phenyl propane by ultra-high modulus polyethylene fibers. Biomaterials. 13(1) (1998) 17-19.
https://dx.doi.org/10.1016/0142-9612(92)90088-6
[148] M.A. Freilich, J.C. Meiers, J.P. Duncan, A. Jon Goldberg, Fiber Reinforced Composites in Clinical Dentistry. IL: Qintessence Publishing, 2000.
[149] J. Jancar, A.T. Dibenedetto, Fiber reinforced thermoplastic composites for dentistry, Part I hydrolytic stability of the interface. J. Mater. Sci. – Mater. Med. 4(6) (1993) 555-561.
https://dx.doi.org/10.1007/BF00125593
[150] J. Jancar, A.T. Dibenedetto, A.J. Goldberg, Thermoplastic fiber- reinforced composites for dentistry Part II Effect of moisture on flexural properties of unidirectional composites. J. Mater. Sci. – Mater. Med. 4(6) (1993) 562-568.
https://dx.doi.org/10.1007/BF00125594
[151] T. Imai, F. Watari, S. Yamagata, M. Kobayashi, K. Nagayama, S. Nakamura, Effects of water immersion on mechanical properties of new esthetic orthodontic wire. Am. J. Orthod. Dentofacial. Orthop. 116(5) (1999) 533-538.
https://dx.doi.org/10.1016/S0889-5406(99)70185-X
[152] S.W. Zufall, K.C. Kennedy, R.P. Kusy, Frictional characteristics of composite orthodontic arch wires against stainless steel and ceramic brackets in the passive and active configurations. J. Mater. Sci. – Mater. Med. 9(11) (1998) 611-620.
https://dx.doi.org/10.1023/A:1008977106648
[153] L.L. Hench, E.C. Ethridge Biomaterials An Interfacial Approach. New York: Academic Press, 1982.
[154] S. Kocvara, C.H. Kliment, J. Kubat, M. Stol, Z. Ott, J. Dvorak, Gel-fabric prostheses of the ureter. J. Biomed. Mater. Res. 1(3) (1967) 325-336.
https://dx.doi.org/10.1002/jbm.820010304
[155] A.G. Andreopoulos, M. Evangelatou, P.A. Tarantili, Properties of maxillofacial silicone elastomers reinforced with silica powder. J. Biomater. Appl. 13(1) (1998) 66-73.
[156] S.P. Arnoczky, P.A. Torzilli, R.F. Warren, A.A. Allen, Biologic fixation of ligament prostheses and augmentations. An evaluation of bone in growth in the dog. Am. J. Sports Med. 16(2) (1988) 106-112.
https://dx.doi.org/10.1177/036354658801600204
[157] J.L. Berry, W.S. Berg, T.M. Stahurski, J.M. Moran, E.M. Morgan, A.S. Greenwald, Evaluation of Dacron-covered and plain bovine xenografts as replacements for the anterior cruciate ligament, Clin. Orthop. Relat. Res. 236 (1988) 270-278.
https://dx.doi.org/10.1097/00003086-198811000-00037
[158] L. Durselen, L. Claes, A. Ignatius, S. Rubenacker, Comparative animal study of three ligament prostheses for the replacement of the anterior cruciate and medial collateral ligament. Biomaterials. 17(10) (1996) 977-982.
https://dx.doi.org/10.1016/0142-9612(96)84671-0
[159] I.W. Forster, Z.A. Ralis, D.H. Jenkins, Filamentous carbon fiber induction of new tendon: tissue reactions and environmental conditions, in: G.D Winter, J.L.Leray, K. de Groot (Eds.), Evaluation of Biomaterials, John Wiley & Sons Ltd, New York, 1980. pp. 367-371.
[160] D.H.R. Jenkins, Experimental and clinical application of carbon fiber as an implant in orthopedics. J. Bone Joint Surg. 59-B(4) (1977) 501.
[161] M.W. King, N. Poddevin, R. Guidoin, Y. Marois, B. Cronier, A.Y. Belanger, Y.P. Delagoutte, Designing textile structures to repair and replace knee ligaments. Canadian Textile Journal.113(3) (1996) 53-57.
[162] Y. Marois, R. Roy R, T. Vidovszky, M.W. King, A.Y. Bélanger, C. Chaput, R. Guidoin, Histopathological and immunological investigations of synthetic fibres and structures used in three prosthetic anterior cruciate ligaments: in vivo study in the rat. Biomaterials. 14(4) (1993) 255-262.
https://dx.doi.org/10.1016/0142-9612(93)90115-I
[163] D.G. Mendes, M.Iusim, D. Angel, A.Rotem,D: Mordehovich, M. Roffman, S.Lieberson, J. Boss, Ligament and tendon substitution with composite carbon fiber strands. J. Biomed. Mater. Res. 20(6) (1986) 699-708.
https://dx.doi.org/10.1002/jbm.820200604
[164] K.Y. Pedro, D.L. Christiansen, R.A. Hahn, S.J. Shieh, J.D. Goldstein, F.H. Silver, Mechanical properties of collagen fibers: a comparison of reconstituted and rat tail tendon fibers. Biomaterials. 10(1) (1989) 38–42.
https://dx.doi.org/10.1016/0142-9612(89)90007-0
[165] C.J. Peterson, J.H. Donachy, A. Kalenak, A segmented poly-urethane composite prosthetic anterior cruciate ligament in vivo study. J. Biomed. Mater. Res. 19(5) (1985) 589-594.
https://dx.doi.org/10.1002/jbm.820190510
[166] J.V. Wening, H. Marquardt, A. Katzer, K.H. Jungbluth, Cytotoxicity and mutagenicity of Kelvar®: an in vitro evaluation. Biomaterials. 16(4) (1995) 337-340.
https://dx.doi.org/10.1016/0142-9612(95)93262-C
[167] M.N. Pradas, R.D. Calleja, Reproduction in a polymer composite of some mechanical features of tendons and ligaments,in: M. Szycher (Ed.), High Performance Biomaterials:A Comprehensive Guide to Medical and Pharmaceutical Applications. Technomic Publishing, Lancaster, (1991) pp. 519-523.
[168] S. Iannace, G. Sabatini, L. Ambrosio, L. Nicolais, Mechanical behavior of composite artificial tendons and ligaments. Biomaterials. 16(9) (1995) 675-680.
https://dx.doi.org/10.1016/0142-9612(95)99693-G
[169] L. Ambrosio, P.A. Netti, S. Iannace, S.J. Huang, L. Nicolais, Composite hydrogels for intervertebral disc prostheses. J. Mater. Sci: Mater. M. 7(5) (1996) 251-254.
https://dx.doi.org/10.1007/BF00058561
[170] L. Ambrosio, R. De Santis, S. Iannace, P.A. Netti, L. Nicolais, Viscoelastic behavior of composite ligament prostheses. J. Biomed. Mater. Res. 42(1) (1998) 6-12.
https://dx.doi.org/10.1002/(SICI)1097-4636(199810)42:1<6::AID-JBM2>3.0.CO;2-U
[171] B. Gershon, D. Cohn, G. Marom, Compliance and ultimate strength of composite arterial prostheses. Biomaterials. 13(1) (1992) 38-43.
https://dx.doi.org/10.1016/0142-9612(92)90093-4
[172] B. Gershon, D. Cohn, G. Marom, Utilization of composite laminate theory in the design of synthetic soft tissues for biomedical prostheses. Biomaterials. 11(8) (1990) 548-552.
https://dx.doi.org/10.1016/0142-9612(90)90076-3
[173] N. Klein, M.L. Carciente, D. Cohn, G. Marom, G. Uretzky, H. Peleg, Filament-wound composite soft tissue prostheses: controlling compliance and strength by water absorption and degradation. J. Mater. Sci-Mater M. 4(3) (1993) 285-291.
https://dx.doi.org/10.1007/BF00122282
[174] G.C. Robin, Below-knee drop-foot braces: stresses during use and evaluation of design, in: D.N. Ghista (Eds.), Biomechanics of Medical Devices, Marcel Dekker Inc., New York, (1981) pp. 535-567.
[175] A.G.A. Coombes, C.D. Greenwood, J.J. Shorter, Plastic materials for external prostheses and orthoses, in: D.L. Wise, D.J. Trantolo, D.E. Altobelli, M.J. Yaszemski, J.D. Gresser (Eds.), Human Bio-materials Applications, Humana PressTotowa, New York, (1996) pp. 215-255.
https://dx.doi.org/10.1007/978-1-4757-2487-5_11
[176] M.A. Tallent, C.W. Cordova, D.S Cordova, D.S. Donnelly, Ther-moplastic fibers for composite reinforcement, in: S.M. Lee (Eds.), International Encyclopedia of Composites, VCH Publishers, New York, (1990) pp. 466-480.
[177] Z.M. Huang, S. Ramakrishna, Development of knitted fabric reinforced composite material for prosthetic application. Adv. Compos. Lett. 8(6) (1999)289-294.
[178] V.K. Ganesh, S. Ramakrishna, Prothesis: another concept. The European periodical for technical textile users. Quarterly Magazine, 29 (1998) 56-60.
[179] S.l. Toh, J.C.H. Goh, P.H. Tan, T.E. Tay, Fatigue testing of energy storing prosthetic feet. Prosth. Oth. Int. 17 (1993) 180-188.
[180] J.C.H. Goh, P.H. Tan, S.L.Toh, T.E. Tay, Gait analysis study of an energy-storing prosthetic foot-a preliminary study. Gait & Posture. 2(2) (1994) 95–101.
https://dx.doi.org/10.1016/0966-6362(94)90098-1
[181] R. Ward, R.J. Minns, Woven carbon fiber mesh patch versus Dacron mesh in the repair of experimental defects in the lumbar fascia of rabbits. Biomaterials. 10(6) (1989) 425-428.
https://dx.doi.org/10.1016/0142-9612(89)90135-X
[182] J.A. Werkmeister, G.A. Edwards, F. Casagranda, J.F. White, J.A.M. Ramshaw, Evaluation of a collagen-based biosynthetic material for the repair of abdominal wall defects, J. Biomed. Mater. Res. 39 (199) 429-436.
https://dx.doi.org/10.1002/(sici)1097-4636(19980305)39:3<429::aid-jbm12>3.0.co;2-5
[183] S. Ramakrishna, S. Ramaswamy, S.H. Teoh, C.T. Tan, Develop-ment of a knitted fabric reinforced elastomeric Composite intervertebral disc prosthesis. Proc ICCM-11, Conard Jupiters- Golad oast, Australia, 1 (1997) 458-466.
[184] S.H. Teoh, Z.G. Tang, S. Ramakrishna, Development of thin elastomeric composite membranes for biomedical applications, J. Mater. Sci. Mater. Med. 10(6) (1999) 343-352.
https://dx.doi.org/10.1023/A:1026421606939
[185] B.M. Cherian, A.L. Leão, S.F. de Souza, L.M.M. Costa, G.M. de Olyveira, M. Kottaisamy, E.R. Nagarajan, S. Thomas, Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carb. Polym. 86(4) (2011) 1790-1798.
https://dx.doi.org/10.1016/j.carbpol.2011.07.009