Novel Ceramic Materials, Chapter 9

$15.95

Charge Density of Al Doped Lanthanum Orthoferrites

R. Saravanan, G. Gowri

Bulk Al doped lanthanum orthoferrites (La1-xAlxFeO3-LAFO) have been prepared using the solid state reaction method, for three different concentrations of Al (x=0, 0.40, 0.50). The prepared samples have been characterized by a powder X-ray diffractometer, scanning electron microscope, energy dispersive analysis using X-ray, UV-Visible spectrometer and vibration sample magnetometer respectively. The X- ray data of the samples have been used for resolving the structure and the refined structure factors were used for the study of the charge density distribution in the unit cell of the prepared samples, using the maximum entropy method. The magnetic behaviour of the Al doped samples has been found to enhance significantly as studied from the VSM measurements. Due to the enhancement in ferromagnetic behavior of aluminium doped lanthanum orthoferrite, the material can be considered as a capable candidate for magnetic memory device applications within the doping limit.

Keywords
XRD, MEM, Charge Density, VSM, UV-Visible Spectra

Published online 6/1/2016, 20 pages

DOI: 10.21741/9781945291036-9

Part of Novel Ceramic Materials

References
[1] J.-M. Liu, Q.C. Li, X.S. Gao, Y. Yang, X.H. Zhou, X.Y. Chen, et al.,Order coupling in ferroelectromagnets as simulated by a Monte Carlo method, Phys.Rev.B. 66 (2002) 054416–054426.
https://dx.doi.org/10.1103/PhysRevB.66.054416
[2] N.A. Hill, Why are there so few magnetic ferroelectrics? J.Phys. Chem. B.104 (2000) 6694–6709.
https://dx.doi.org/10.1021/jp000114x
[3] Y.-H. Lee, J.-M. Wu, Epitaxial growth of LaFeO3 thin films, J. Cryst. Growth. 263 (2004) 436-441.
https://dx.doi.org/10.1016/j.jcrysgro.2003.12.007
[4] P.M. Woodward, Octahedral Tilting in Perovskites. I. Geometrical Considerations, Acta Cryst. B53 (1997) 32-43.
https://dx.doi.org/10.1107/S0108768196010713
[5] P.M. Woodward, Octahedral Tilting in Perovskites. I. Geometrical Structure, Acta Cryst. B 53 (1997) 44-66.
https://dx.doi.org/10.1107/S0108768196012050
[6] G.R. Hearne, M.P. Pasternak, Electronic structure and magnetic properties of LaFeO3 at high pressure, Phys. Rev. B. 51 (1995) 11495–11500.
https://dx.doi.org/10.1103/PhysRevB.51.11495
[7] S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Multiferroic behavior of Lanthanum orthoferrite(LaFeO3), Mater. Lett. 64 (2010) 415-418.
https://dx.doi.org/10.1016/j.matlet.2009.11.037
[8] M.A. Ahmed, S.I. El-Dek, Extraordinary role of Ca 2+ ions on the magnetization of LaFeO3 orthoferrite, Mater. Sci. Eng. B, 128 (2006) 30–33.
https://dx.doi.org/10.1016/j.mseb.2005.11.013
[9] S. Farhadi, Z. Momeni, M. Taherimehr, Rapid synthesis of perovskite-type LaFeO3 nano particles by microwave- assisted decomposition of bimetallic [LaFe(CN)6].5H2O Compound, J. Alloys Compd. 471 (2009) L5–8.
https://dx.doi.org/10.1016/j.jallcom.2008.03.113
[10] F. Li, Y. Liu, R. Liu, Z. Sun, D. Zhao, C. Kou, Ferromagnetism and optical properties of La1 − x Al x FeO3 nanopowders, Mater. Lett. 64 (2010) 223–225.
https://dx.doi.org/10.1016/j.matlet.2009.10.048
[11] A. Singh, R. Chatterjee, Magnetization induced dielectric anomaly in multiferroic solid solution, Appl. Phys. Lett. 93 (2008) 182908–182910.
https://dx.doi.org/10.1063/1.3012389
[12] J. Lüning, F. Nolting, A. Scholl, H. Ohldag, J. W. Seo, J. Fompeyrine, J.-P. Locquet, and J. Stöhr, et al., Determination of the antiferromagnetic spin axis in epitaxial films by x-ray magnetic linear dichroism spectroscopy, Phys. Rev. B. 67 (2003) 214433–214436.
https://dx.doi.org/10.1103/PhysRevB.67.214433
[13] J.W. Seo, E.E. Fullerton, F. Nolting, A. Scholl, J. Fompeyrine, J.P. Locquet, Exchange Bias Induced by the Fe3O4 Verwey transition, J. Phys.: Condens. Matter. 20 (2008) 264014–264023.
https://dx.doi.org/10.1088/0953-8984/20/26/264014
[14] S.J.Chao, K.S. Song, I.S. Ryu, Y.S. Seo, M.W. Rayoo, S.K.Kang, Catal. Lett. 58 (1999) 63–66.
https://dx.doi.org/10.1023/A:1019092809562
[15] N.Q. Minh, Ceramic fuel cells, J. Am. Ceram. Soc. 76 (1993) 563–588.
https://dx.doi.org/10.1111/j.1151-2916.1993.tb03645.x
[16] B.C.H. Steele, Studies on electrical and dielectric properties of LaFeO3, Mater. Sci. Eng.B. 13 (1992) 75–79.
https://dx.doi.org/10.1016/0921-5107(92)90146-Z
[17] D.B. Meadowcraft J.M. Wimmer, Studies on electrical and dielectric properties of LaFeO3, Ceram. Bull. 58 (1979) 610–612.
[18] G. Karlsson, Studies on electrical and dielectric properties of LaFeO3, Electrochim. Acta. 30 (1985) 1555–1561.
https://dx.doi.org/10.1016/0013-4686(85)80019-0
[19] T.Nekamura, G.Petzow, L.J.Gauckler, Stability of the perovskite phase LaBO3 (B=V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere. I. Experimental results, Mater. Res. Bull. 14 (1979) 649–659.
https://dx.doi.org/10.1016/0025-5408(79)90048-5
[20] J.Mizusaki, T. Sisamoto, W.K.Cannon, H.Kent Bowen, Studies on electrical and dielectric properties of LaFeO3, J. Am. Ceram. Soc. 65 (1982) 363.
https://dx.doi.org/10.1111/j.1151-2916.1982.tb10485.x
[21] M.A.Ahmed, N.Okasha, B. Hussein, Synthesis, characterization and studies on magnetic and electrical properties of LaAlyFe1-yO3 nanomultiferroic, J. Alloys Compd. 553 (2013) 308–315.
https://dx.doi.org/10.1016/j.jallcom.2012.11.114
[22] H.M. Rietveld: A Profile Refinement Method for Nuclear and Magnetic Structures J. Appl. Crystallogr. 2 (1969) 65-71.
https://dx.doi.org/10.1107/S0021889869006558
[23] S. Acharya, P.K. Chakrabarti, Some interesting observations on the magnetic and electric properties of Al3+ doped lanthanum orthoferrite (La0.5Al0.5FeO3), Solid State Commun. 150 (2010) 1234-1237.
https://dx.doi.org/10.1016/j.ssc.2010.04.006
[24] Petřiček, V., Dušek, & M., Palatinus, L. JANA 2006, the crystallographic computing system. Praha, Czech Republic: Academy of Sciences of the Czech Republic, (2006).
[25] M. M. Wolfson. Introduction to X-ray Crystallography, Cambridge University Press, London, 1970.
[26] R.D.Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. A32 (1976) 751-767.
https://dx.doi.org/10.1107/S0567739476001551
[27] M. Sakata, M.Sato, Accurate structure analysis by the maximum entropy method, Acta crystallographica. A46 (1990) 263-270
https://dx.doi.org/10.1107/S0108767389012377
[28] F.Izumi, R.A.Dilanien. PRIMA, for the maximum entropy method advanced materials laboratory, Japan, 2004.
[29] K.Momma and F.Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J.Appl. Crystallogr, 41 (2008) 653-658.
https://dx.doi.org/10.1107/S0021889808012016
[30] R.Caracas, Spin and structural transitions in AlFeO3 and FeAlO3 perovskite and post-perovskite, Phys. Earth Planet. In. 182 (2010) 10-17.
https://dx.doi.org/10.1016/j.pepi.2010.06.001
[31] R. Saravanan, GRAIN software, Private Communication. 2008.
[32] S.M. Sze, Physics of Semiconductor Devices, J. Wiley & Sons, 1969, 52.
[33] Roberto Köferstein, Lothar Jäger, Stefan G. Ebbinghaus, magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics, Solid State Ionics, (2013) 249-250:1-5.
https://dx.doi.org/10.1016/j.ssi.2013.07.001
[34] M.A. Ahmed, N.Okasha, B.Hussein, Enhancement of the magnetic properties of Al/La multiferroic, J. Magn. Magn. Mater. 324 (2012) 2349-2354.
https://dx.doi.org/10.1016/j.jmmm.2012.02.036
“>