Novel Ceramic Materials, Chapter 8

$15.95

Electronic Charge Density Distributions in Sb2O

T. K. Thirumalaisamy, S. Saravanakumar, R. Saravanan

High-resolution charge density distribution maps have been elucidated using the maximum entropy method (MEM) for the cubic polymorph of antimony oxide (Sb2O3) using experimental X-ray structure factors. Information about the nature of bonding and relative bond strengths in the cubic polymorph of antimony oxide (Sb2O3) were extracted. The microstructure and the band gap energy of antimony oxide (Sb2O3) have been studied through scanning electron microscopy and UV-Visible analysis respectively.

Keywords
Sb2O3, Charge Density, MEM, XRD, SEM, UV-Vis

Published online 6/1/2016, 15 pages

DOI: 10.21741/9781945291036-8

Part of Novel Ceramic Materials

References
[1] G. Poirier, M. Poulain and M. Poulain, Copper and lead halogeno-antimoniate glasses, J. Non-Cryst. Solids, 284 (2001) 117-122.
https://dx.doi.org/10.1016/S0022-3093(01)00389-1
[2] M. Nalin, M. Poulain, M. Poulain, S. J. L. Ribeiro and Y. Messaddeq, Antimony oxide based glasses, J. Non-Cryst. Solids, 284 (2001) 110-116.
https://dx.doi.org/10.1016/S0022-3093(01)00388-X
[3] R.E. Araujo, C.B. Araujo, G. Poirier, M. Poulain and Y. Messaddeq, Nonlinear optical absorption of antimony and lead oxyhalide glasses, Appl. Phys. Lett., 81 (2002) 4694-4696.
https://dx.doi.org/10.1063/1.1529310
[4] Z.T. Deng, D. Chen, F.Q. Tang, X.W. Meng, J. Ren and L. Zhang, Orientated attachment assisted self-assembly of Sb2O3 nanorods and nanowires: End-to-end versus side-by-side, Journal of Physical Chemisrty C, 111 (2007) 5325.
https://dx.doi.org/10.1021/jp068545o
[5] Z.J. Zhang and X.Y. Chen, Biomolecule-assisted hydrothermal synthesis of Sb2S3 and Bi2S3 nanocrystals and their elevated-temperature oxidation behavior for conversion into α-Sb2O4 and Bi2O3, .J. Phy. Chem. Solid, 70 (2009) 1121.
https://dx.doi.org/10.1016/j.jpcs.2009.06.010
[6] L. Guo, Z. Wu, T. Liu, W. Wang and H. Zhu, Synthesis of novel Sb2O3 and Sb2O5 nanorods, Chem. Phy. Lett. 318 (2000) 49-52.
https://dx.doi.org/10.1016/S0009-2614(99)01461-X
[7] C. Svensonn, The crystal structure of orthorhombic antimony trioxide, Sb2O3, Acta Cryst. B, 301974 (1974) 458461.
https://dx.doi.org/10.1107/s0567740874002986
[8] C. Svensonn, Refinement of the crystal structure of cubic antimony trioxide, Sb2O3, Acta Cryst. B, 31 (1975) 2016-2018.
https://dx.doi.org/10.1107/S0567740875006759
[9] R.G. Orman and D. Holland, Thermal phase transitions in antimony (III) oxides, J. Solid State Chem., 180 (2007) 2587-2596.
https://dx.doi.org/10.1016/j.jssc.2007.07.004
[10] N.K. Sahoo and K.V.S.R. Apparao, Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications, Appl. Phys. A, 63 (1996) 195-202.
https://dx.doi.org/10.1007/bf01567650
[11] X. Lu, Z. Wen and J. Li, Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors, Biomaterials, 27 (2006) 5740-7
https://dx.doi.org/10.1016/j.biomaterials.2006.07.026
[12] R. Sakai, Y. Benino and T. Komatsu, Enhanced second harmonic generation at surface in transparent nanocrystalline TeO2-based glass ceramics, Appl. Phys. Lett., 77 (2000) 2118-2120.
https://dx.doi.org/10.1063/1.1313805
[13] G. Senthil, K.B.R. Varma, Y. Takahashi and T. Komatsu, Nonlinear-optic and ferroelectric behavior of lithium borate–strontium bismuth tantalate glass–ceramic composite, Appl. Phys. Lett., 78 (2001) 4019-4021.
https://dx.doi.org/10.1063/1.1380237
[14] Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara and T. Komatsu, luminescent properties of CaAl2Si2O8 nano crystallized glass, Appl. Phys. Lett., 86 (2005) 091110.
https://dx.doi.org/10.1063/1.1879114
[15] T. Satyanarayana, I.V. Kityk, M. Piasecki, P. Bragiel, M.G. Brik, Y. Gandhi and N.Veeraiah, Structural investigations on PbO–Sb2O3–B2O3_CoO glass ceramics by means of spectroscopic and dielectric studies, J. Phys.: Condens. Matter., 21 (2006) 245104.
https://dx.doi.org/10.1088/0953-8984/21/24/245104
[16] E.L. Falcao-Filho, C.B. de Araújo, G.S. Bosco, Maciel, L.H. Acioli, M. Nalin, and Y. Messaddeq, Antimony orthophosphate glasses with large nonlinear refractive-indices, low two photon absorption coefficients, and ultrafast response, J. Appl. Phys., 97 (2005) 013505.
https://dx.doi.org/10.1063/1.1828216
[17] Z.T. Deng, F.Q. Tang, D. Chen, X.W. Meng, L. Cao and B.S. Zou, A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections, J. Phys. Chem. B, 110 (2006) 18225.
https://dx.doi.org/10.1021/jp063748y
[18] Y. Zhang, G. Li, J. Zhang and L. Zhang, Shape-controlled growth of one-dimensional Sb2O3 nanomaterials, Nanotechnology, 15 (2004) 762-765.
https://dx.doi.org/10.1088/0957-4484/15/7/007
[19] Z. Deng, D. Chen, F. Tang, J. Ren and A.J. Muscat, Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section, Nano Res., 2 (2009) 151-160.
https://dx.doi.org/10.1007/s12274-009-9014-y
[20] Q. Wang, S. Ge, Q. Shao and Y. Zhao, Self-assembly of Sb2O3 nanowires into microspheres: synthesis and characterization, Phys. B, 406 (2011) 731-736.
https://dx.doi.org/10.1016/j.physb.2010.11.038
[21] G.Fan, Z. Huang, C. Chai and D. Liao, Synthesis of micro-sized Sb2O3 hierarchical structures by carbothermal reduction method, Mater. Lett., 65 (2011) 1141-1144.
https://dx.doi.org/10.1016/j.matlet.2010.09.084
[22] T. Som and B. Karmakar, Structure and properties of low-phonon antimony glasses and nano glass-ceramics in K2O-B2O3-Sb2O3 system, J Non-Cryst. Solids, 356 (2010) 987-999.
https://dx.doi.org/10.1016/j.jnoncrysol.2010.01.026
[23] Xu C.H, Shi S.Q, Surya C and Woo C.H, Synthesis of antimony oxide nano- particles by vapor transport and condensation, J. Mater. Sci., 42 (2007) 9855-9858.
https://dx.doi.org/10.1007/s10853-007-1799-z
[24] Ye C, Wang G, Kong M and Zhang L, Controlled Synthesis of Sb2O3 Nanoparticles, Nanowires, and Nanoribbons, J. Nanomater. 2006, 95670 p.1-5.
https://dx.doi.org/10.1155/JNM/2006/95670
[25] Li Y, Zhang Y.X, Fang X.S, Zhai T.Y, Liao M.Y, Wang H.Q, Li G.H, Koide Y, Bando Y and Goldberg D, Sb2O3 nanobelt networks for excellent visible-light-range photodetectors, Nanotechnolog, 22 (2011) 165704.
https://dx.doi.org/10.1088/0957-4484/22/16/165704
[26] Rietveld H.M, A Profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., 2 (1969) 65-71.
https://dx.doi.org/10.1107/S0021889869006558
[27] Collins D.M, Electron density images from imperfect data by iterative entropy maximization, Nature, 298 (1982) 49-51.
https://dx.doi.org/10.1038/298049a0
[28] Petricek V, Dusek M and Palatinus L, JANA 2006, The Crystallographic Computing System, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, 2000.
[29] Wood D. L and Tauc J, Weak absorption tails in amorphous semiconductors Phys. Rev., B5 (1972) 3144.
https://dx.doi.org/10.1103/PhysRevB.5.3144
[30] Wolffing B and Hurych Z, Photoconductivity in crystalline and amorphous Sb2O3, Phys. Status Solidi (a), 16 (1973) K161-K163.
https://dx.doi.org/10.1002/pssa.2210160256
[31] Tigau N, Ciupina V and Prodan G, The effect of substrate temperature on the optical properties of polycrystalline Sb2O3 thin films, J. Cryst. Growth, 277 (2005) 529-535.
https://dx.doi.org/10.1016/j.jcrysgro.2005.01.056
[32] Validzic I.L, Abazovic N. D, Mitric M, Lalic M. V, Popovic Z. S and Vukajlovic F. R, Novel organo-colloidal synthesis, optical properties, and structural analysis of antimony sesquioxide nanoparticles, J. Nanopart. Res., 15 (2013) 1347.
https://dx.doi.org/10.1007/s11051-012-1347-x
[33] Momma K and Izumi F, Commission on crystallographic computing IUCr Newsletter, No.7 (2006) 106-119.
“>