Novel Ceramic Materials, Chapter 14

$15.95

Synthesis and Charge Density Analysis of BaTiO3

S. Sasikumar, R. Saravanan

Perovskite BaTiO3 ceramics were prepared by the solid state reaction technique. Structural and surface morphological properties were explored using the XRD and SEM techniques. The results of structural characterization show the formation of BaTiO3 sample in a single phase without any impurity. It was found to crystallize in a tetragonal symmetry with a P4mm space group. The charge density distribution of BaTiO3 has been constructed using the maximum entropy method. Scanning electron microscope images were used to find the aggregate particle size. The optical absorption analysis was done using a UV-Visible spectrophotometer.

Keywords
Rietveld Refinement, Charge Density, Maximum Entropy Method, Scanning Electron Microscopy

Published online 6/1/2016, 12 pages

DOI: 10.21741/9781945291036-14

Part of Novel Ceramic Materials

References
[1] B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, London, 1971.
[2] Z. Jing, Z. Yu, C. Ang, Crystalline structure and dielectric properties of Ba(Ti1−yCey)O3, J. Mater. Sci. 38 (2003) 1057-1061.
https://dx.doi.org/10.1023/A:1022306132064
[3] F. Jona, G. Shirane, Ferroelectric Crystal, Dover Publication, New York, 1993.
[4] D. Hennings, A. Schnell, G. Simon, Diffuse Ferroelectric Phase Transitions in Ba(Ti1-yZry)O3 Ceramics, J. Am. Ceram. Soc. 65 (1982) 536-544.
https://dx.doi.org/10.1111/j.1151-2916.1982.tb10778.x
[5] H.T. Langhammer, T. Muller, K. Felgner, H. Abicht, J. Am. Ceram. Soc. 83 (2000) 605-611.
https://dx.doi.org/10.1111/j.1151-2916.2000.tb01239.x
[6] M.E. Lines, A.M. Glass, Principles and Application of Ferroelectric and Related Materials, Oxford University Press, Oxford, 1977.
[7] A. Rae, M. Chu, V. Ganine, Barium titanate-past, present and future Ceram. Trans. 100 (1999) 1-12.
[8] K. Albertsen, Reoxidation of Ni-MLCC, J. Eur. Ceram. Soc. 24 (2004) 1883-1887
https://dx.doi.org/10.1016/S0955-2219(03)00463-1
[9] W.H. Tzing, W.H. Tsuan, H.L. Lin, Ceram. Int. 25 (1999) 425.
https://dx.doi.org/10.1016/S0272-8842(98)00058-3
[10] W.H. Tzing, W.H. Tsuan, Ceram. Int. 25 (1999) 69.
https://dx.doi.org/10.1016/S0272-8842(98)00003-0
[11] G. Arlt, D. Hennings, G. de With, Dielectric properties of fine‐grained barium titanate ceramics, J. Appl. Phys. 58 (1985) 1619.
https://dx.doi.org/10.1063/1.336051
[12] K. Uchino, E. Sadanaga, T. Hirose, Dependence of the crystal structure on particle size in barium titanate, J. Am. Ceram. Soc. 72 (1989) 1555-1558.
https://dx.doi.org/10.1111/j.1151-2916.1989.tb07706.x
[13] T.T. Fang, H.L. Hseih, F.S. Shiau, Effect of Pore Morphology and Grain Size on the Dielectric Properties and Tetragonal-Cubic Phase Transition of High-Purity Barium Titanate, J. Am. Ceram. Soc. 76 (1993) 1205-1211.
https://dx.doi.org/10.1111/j.1151-2916.1993.tb03742.x
[14] A. Kirchner, M. Arin, P. Lommens, X. Granados, S. Ricart, B. Holzapfel, I. Van Driessche, Chemical solution deposition of multiferroic La0.7Sr0.3MnO3, BaTiO3 thin films prepared by ink plotting, J. Alloys Compd. 516 (2012) 16–19.
https://dx.doi.org/10.1016/j.jallcom.2011.11.025
[15] P. Zheng, J.L. Zhang, Y.Q. Tan, C.L. Wang, Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics Acta Mater. 60 (2012) 5022–5030.
https://dx.doi.org/10.1016/j.actamat.2012.06.015
[16] P. Ren, H. Fan, X. Wang, K. Liu, A novel approach to prepare tetragonal BaTiO3 nanopowders, Mater Lett. 65 (2011) 212–214.
https://dx.doi.org/10.1016/j.matlet.2010.10.015
[17] S. Chao, F. Dogan, BaTiO3-SrTiO3 Layered Dielectrics for Energy Storage Mater Lett. 65 (2011) 978–981.
[18] N. Raengthon, T. Sebastian, D. Cumming, Ian. M. Reaney, D.P. Cann, BaTiO3–Bi(Zn1/2Ti1/2) O3–BiScO3 Ceramics for High‐Temperature Capacitor Applications J. Am. Ceram. Soc. 95 (2012) 3554–3561.
https://dx.doi.org/10.1111/j.1551-2916.2012.05340.x
[19] Y. Wang, X. Chen, H. Zhou, L. Fang, L. Liu, H. Zhang, J. Alloys Compd. 551 (2013) 365–369.
https://dx.doi.org/10.1016/j.jallcom.2012.09.127
[20] C. Chen, Y. Wei, X. Jiao, D. Chen, Hydrothermal synthesis of BaTiO3: crystal phase and the Ba2+ ions leaching behavior in aqueous medium, Materials Chemistry and Physics 110 (2008) 186–191.
https://dx.doi.org/10.1016/j.matchemphys.2008.01.031
[21] H. Zhang, X. Wang, Z. Tian, C. Zhong, Y. Zhang, C. Sun, L. Li, Journal of the American Ceramic Society 94 (2011) 3220–3222.
https://dx.doi.org/10.1111/j.1551-2916.2011.04805.x
[22] Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, Materials Letters 63 (2009) 239–241.
https://dx.doi.org/10.1016/j.matlet.2008.09.050
[23] H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic, J. Appl. Crystallogr. 2 (1969) 65.
https://dx.doi.org/10.1107/S0021889869006558
[24] V. Petricek, M. Dusˇek, L. Palatinus, nin: JANA2000, The Crystallographic Computing System, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, (2000).
https://dx.doi.org/10.1038/298049a0
[25] D.M. Collins, Electron density images from imperfect data by iterative entropy maximization Nature, 298 (1982) 49-51.
[26] J. Tauc, R. Grigorvici, and Y. Yanca, Optical Properties and Electronic Structure of Amorphous Germanium, Phys. Status Solidi 15 (1966) 627 -637
https://dx.doi.org/10.1002/pssb.19660150224
[27] J. Pancove, Optical Processes in Semiconductors (Englewood Cliffs, NJ: Prentice-Hall, 1979).
“>