Transition Metal Oxide Catalysts as Supercapacitor Electrode Materials for Sustainable Energy Storage Applications

$40.00

Transition Metal Oxide Catalysts as Supercapacitor Electrode Materials for Sustainable Energy Storage Applications

AVILA Josephine B., Mary TERESITA V., MATHUMITHA Babu

In recent decades, the growing dependency on non-renewable fossil fuels has presented a significant risk to human sustainability, emphasizing the critical need for developing non-polluting and economically achievable energy storage technologies. Among these, supercapacitors have accumulated significant attention for their vital role in energy conservation, offering distinct advantages such as compact form factor, lightweight construction, elevated power density, and extended operational lifespan. They have garnered global attention for their unique properties and potential applications. Several studies have been devoted to improving electrode materials, with particular emphasis on transition metal oxide (TMO)-based systems. These materials are in high demand for their high theoretical pseudocapacitance, making them ideal candidates for fabricating advanced composite electrodes in supercapacitor applications. Enhancing these electrodes is critical role for achieving superior energy density, greater specific power, and rapid charge–discharge capabilities, the factors that collectively optimize the performance and efficiency of supercapacitors. This chapter presents a comprehensive overview of the latest developments in TMO composite materials. It also focuses on the fabrication techniques, structural characterization, electrochemical behavior, and the evaluation of various transition metal oxide (TMO)-based electrode materials in supercapacitor systems. By systematically examining these features, the chapter aims to unveil the full potential of TMO composites for energy storage applications and to advance their continued evolution within the field.

Keywords
Energy Storage, Pseudo Capacitance, Transition Metal Oxides, Composite Electrodes

Published online 10/20/2025, 18 pages

Citation: AVILA Josephine B., Mary TERESITA V., MATHUMITHA Babu, Transition Metal Oxide Catalysts as Supercapacitor Electrode Materials for Sustainable Energy Storage Applications, Materials Research Foundations, Vol. 182, pp 100-117, 2025

DOI: https://doi.org/10.21741/9781644903797-8

Part of the book on Electrocatalysts and Advanced Materials for Sustainable Energy Storage

References
[1] C.N. Chervin, B.J. Clapsaddle, H.W. Chiu, A.E. Gash, J.H. Satcher, S. M. Kauzlarich, Chem. Mater. 18 (2006) 4865-4874.. https://doi.org/10.1021/cm061258c
[2] P. Kanha, P. Saengkwamsawang, Inorg. Nano-Metal Chem. 47 (2017) 1129-1133.. https://doi.org/10.1080/24701556.2017.1284100
[3] M. Saleem, F. Ahmad, M. Fatima, A. Shahzad, M.S. Javed, S. Atiq, M.A. Khan, M. Danish, O. Munir, S.M.B. Arif, U. Faryad, M.J. Shabbir, D. Khan, J. Energy Storage 76 (2024) 109822.. https://doi.org/10.1016/j.est.2023.109822
[4] A.J. Ahamed, P. Vijaya KumarJ. Chem. Pharm. Res. 8 (2016) 624-628.
[5] Q. Geng, X. Su, F. Dong, Z. Wang, IOP Conf. Ser. Earth Environ. Sci. 706 (2021).. https://doi.org/10.1088/1755-1315/706/1/012043
[6] F. Gaspar, C.D. Nunes, Catalysts 10 (2020).. https://doi.org/10.3390/catal10020265
[7] T. Ghoshal, S. Biswas, M. Paul, S.K. De, J. Nanosci. Nanotechnol. 9 (2009) 5973-5980.. https://doi.org/10.1166/jnn.2009.1290
[8] Y. Hu, H.J. Chen, J. Nanopart. Res. 10 (2008) 401-407.. https://doi.org/10.1007/s11051-007-9264-0
[9] C.V. Krishnan, J. Chen, C. Burger, B. Chu, J. Phys. Chem. B 110 (2006) 20182-20188.. https://doi.org/10.1021/jp063156f
[10] X. Li, S. Jiang, J. Li, K. Li, J. Li, J. Appl. Polym. Sci. 139 (2022).. https://doi.org/10.1002/app.51849
[11] M. Vafaee, M.S. Ghamsari, Mater. Lett. 61 (2007) 3265-3268.. https://doi.org/10.1016/j.matlet.2006.11.089
[12] R.S. Yadav, P. Mishra, A.C. Pandey, Ultrason. Sonochem. 15 (2008) 863-868.. https://doi.org/10.1016/j.ultsonch.2007.11.003
[13] T. Yunusi, C. Yang, W. Cai, F. Xiao, J. Wang, X. Su, Ceram. Int. 39 (2013) 3435-3439.. https://doi.org/10.1016/j.ceramint.2012.09.096
[14] M. Danish, M. Islam, F. Ahmad, M. Madni, M. Jahangeer, J. Phys. Chem. Solids 185 (2024) 111783.. https://doi.org/10.1016/j.jpcs.2023.111783
[15] S. Ghorban Hosseini, Z. Khodadadipoor, Indian J. Chem. 57 (2018) 449-453.
[16] J. Huo, Y. Xue, Y. Liu, Y. Ren, G. Yue, J. Electroanal. Chem. 857 (2020) 113751.. https://doi.org/10.1016/j.jelechem.2019.113751
[17] M. Karthi keyan, P. Vijaya Kumar, A. Jafar Ahamed, A. Ravikumar, J. Adv. Appl. Sci. Res. 2 (2021) 1-9.. https://doi.org/10.46947/joaasr222020101
[18] Z. Wang, G.M. Kale, M. Ghadiri, J. Am. Ceram. Soc. 95 (2012) 3124-3129.. https://doi.org/10.1111/j.1551-2916.2012.05366.x
[19] A. Wang, K. Sun, J. Li, W. Xu, J. Jiang, Mater. Chem. Phys. 231 (2019) 311-321.. https://doi.org/10.1016/j.matchemphys.2019.04.046
[20] M. Zheng, X. Xiao, L. Li, P. Gu, X. Dai, H. Tang, H. Pang, Sci. China Mater. 61 (2) (2018) 185-209.. https://doi.org/10.1007/s40843-017-9095-4
[21] J. Wang, Q. Zhong, Y. Xiong, D. Cheng, Y. Zeng, Y. Bu, Appl. Surf. Sci. 483 (2019) 1158-1165.. https://doi.org/10.1016/j.apsusc.2019.03.340
[22] M.D. Angelin, S. Rajkumar, J.P. Merlin, A.R. Xavier, M. Franklin, A. T. Ravichandran, Ionics 26 (11) (2020) 5757-5772.. https://doi.org/10.1007/s11581-020-03681-8
[23] M. Chaudhary, M. Singh, A. Kumar, Y.K. Gautam, A.K. Malik, Y. Kumar, B. P. Singh, Ceram. Int. 47 (2) (2021) 2094-2106.. https://doi.org/10.1016/j.ceramint.2020.09.042
[24] D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, Mater. Res. Bull. 48 (2) (2013) 923-928.. https://doi.org/10.1016/j.materresbull.2012.11.081
[25] Z. Song, W. Liu, N. Sun, W. Wei, Z. Zhang, H. Liu, Z. Zhao, Solid State Commun. 287 (2019) 27-30.. https://doi.org/10.1016/j.ssc.2018.10.007
[26] Q. Wang, Y. Zhang, J. Xiao, H. Jiang, T. Hu, C. Meng, J. Alloys Compd. 782 (2019) 1103-1113.. https://doi.org/10.1016/j.jallcom.2018.12.235
[27] P.S. Kumar, H.H. Kyaw, M.T.Z. Myint, L. Al-Haj, A.A.H. Al-Muhtaseb, M. Al-Abri, V.K. Ponnusamy, Int. J. Energy Res. 44 (13) (2020) 10682-10694.. https://doi.org/10.1002/er.5712
[28] A. Qayyum, M. Okash, F. Ahmad, M. Ahmed, S.M. Ramay, S. Atiq, Solid State Ionics 395 (2023) 116227.. https://doi.org/10.1016/j.ssi.2023.116227
[29] S. Aslam, S.M. Ramay, A. Mahmood, G.M. Mustafa, S. Zawar, S. Atiq, J. Sol-Gel Sci. Technol. 105 (2023) 360-369.. https://doi.org/10.1007/s10971-022-06008-3
[30] H. Jin, J. Li, Y. Yuan, J. Wang, J. Lu, S. Wang, Adv. Energy Mater. 8 (23) (2018) 1801007.. https://doi.org/10.1002/aenm.201801007
[31] Z.S. Iro, C. Subramani, S. Dash, Int. J. Electrochem. Sci. 11 (2016) 10628-10643.. https://doi.org/10.20964/2016.12.50
[32] C.D. Lokhande, D.P. Dubal, O.-S. Joo, Curr. Appl. Phys. 11 (2011) 255e270.. https://doi.org/10.1016/j.cap.2010.12.001
[33] M. Inagaki, H. Konno, O. Tanaike, J. Power Sources 195 (2010) 7880e7903.. https://doi.org/10.1016/j.jpowsour.2010.06.036
[34] Nithiya S. George, Lolly Maria Jose and Arun Aravind, Chapter metrics Overview: Review on Transition metal oxides and their composites for energy storage application, 22 November 2022.. https://doi.org/10.5772/intechopen.108781
[35] J.-K. Lee, H.M. Pathan, K.-D. Jung, O.-S. Joo, J. Power Sources 159 (2006) 1527e1531.. https://doi.org/10.1016/j.jpowsour.2005.11.063
[36] C. Niu, E.K. Sichel, R.R. Hoch, D.D. Moy, H. Tennent, Appl. Phys. Lett. 70 (1997) 1480e1482.. https://doi.org/10.1063/1.118568
[37] W.C. Fang, O. Chyan, C.L. Sun, C.T. Wu, C.P. Chen, K.H. Chen, L.C. Chen, J. H. Huang, Electrochem. Commun. 9 (2007) 239e244.. https://doi.org/10.1016/j.elecom.2006.09.001
[54, 38] C.-C. Hu, K.-H. Chang, C.-C. Wang, Electrochim. Acta 52 (2007) 4411e4418.. https://doi.org/10.1016/j.electacta.2006.12.022
[39] S. Yan, H. Wang, P. Qu, Y. Zhang, Z. Xiao, Synth. Met. 159 (2009) 158e161.. https://doi.org/10.1016/j.synthmet.2008.07.024
[40] X. Wang, W.B. Yue, M.S. He, M.H. Liu, J. Zhang, Z.F. Liu, Chem. Mater. 16 (2004) 799e805.. https://doi.org/10.1021/cm035070u
[41] L. Li, K.H. Seng, H. Liu, I.P. Nevirkovets, Z. Guo, Electrochim. Acta 87 (2013) 801e808.. https://doi.org/10.1016/j.electacta.2012.08.127
[42] J. Gao, M.A. Lowe, H.D. Abruna, Chem. Mater. 23 (2011) 3223e3227.. https://doi.org/10.1021/cm201039w
[43] F. Naamoune, B. Messaoudi, A. Kahoul, N. Cherchour, A. Pailleret, H. Takenouti, Ionics 18 (2012) 365e370.. https://doi.org/10.1007/s11581-011-0621-8
[44] G. Laugel, J. Arichi, H. Guerba, M. Molire, A. Kiennemann, F. Garin, B. Louis, Catal. Lett. 125 (2008) 14e21.. https://doi.org/10.1007/s10562-008-9523-4
[45] S.W. Donne, A.F. Hollenkamp, B.C. Jones, J. Power Sources 195 (2010) 367e 373.. https://doi.org/10.1016/j.jpowsour.2009.06.103
[46] E.C. Rios, A.V. Rosario, R.M.Q. Mello, L. Micaroni, J. Power Sources 163 (2007) 1137e1142.. https://doi.org/10.1016/j.jpowsour.2006.09.056
[47] G.A. Kriegsmann, J. Appl. Phys. 71 (1992) 1960e1966.. https://doi.org/10.1063/1.351191
[48] M. Ghaemi, F. Ataherian, A. Zolfaghari, S.M. Jafari, Electrochim. Acta 53 (2008) 4607e4614.. https://doi.org/10.1016/j.electacta.2007.12.040
[49] Z. Fan, J. Chen, B. Zhang, B. Liu, X. Zhong, Y. Kuang, Diamond Relat. Mater. 17 (2008) 1943e1948.. https://doi.org/10.1016/j.diamond.2008.04.015
[50] G.A. Tompsett, W.C. Conner, K.S. Yngvesson, ChemPhysChem 7 (2006) 296e 319.. https://doi.org/10.1002/cphc.200500449
[51] L. Chen, D. Zhu, Solid State Sci. 27 (2014) 69e72.. https://doi.org/10.1016/j.solidstatesciences.2013.11.001
[52] N. Chen, K. Wang, X. Zhang, X. Chang, L. Kang, Z.-H. Liu, Colloids Surf. A 387 (2011) 10e16.. https://doi.org/10.1016/j.colsurfa.2011.07.003
[53] S. Chou, F. Cheng, J. Chen, J. Power Sources 162 (2006) 727e734.. https://doi.org/10.1016/j.jpowsour.2006.06.033
[54] D.P. Dubal, D.S. Dhawale, T.P. Gujar, C.D. Lokhande, Appl. Surf. Sci. 257 (2011) 3378e3382.. https://doi.org/10.1016/j.apsusc.2010.11.028
[55] N. Behm, D. Brokaw, C. Overson, D. Peloquin, J. Poler, J. Mater. Sci. 48 (2013) 1711e1716.. https://doi.org/10.1007/s10853-012-6929-6
[56] P. Justin, S.K. Meher, G.R. Rao, J. Phys. Chem. C 114 (2010) 5203e5210.. https://doi.org/10.1021/jp9097155
[57] Wei Yu, Xinbing Jiang, Shujiang Ding, Ben Q. Li, J. Power Sources,256, June 2014, 440 – 448. https://doi.org/10.1016/j.jpowsour.2013.12.110
[58] Shankar G. Randive, H. M. Pathan and Balkrishna J. Lokhande, ES Energy & Environment, April 2023, 20, 877
[59] W. Li, T. Li, X. Ma, Y. Li, L. An, Z. Zhang, RSC Adv. 6 (15) (2016) 12491-12496.. https://doi.org/10.1039/C5RA25550C
[60] T.W. Chen, S. Chinnapaiyan, S.M. Chen, M.A. Ali, M.S. Elshikh, A.H. Mahmoud, Sonochem. 63 (2020) 104903.. https://doi.org/10.1016/j.ultsonch.2019.104903
[61] T.W. Chen, U. Rajaji, S.M. Chen, R.J. Ramalingam, X. Liu, 58 (2019) 104595.. https://doi.org/10.1016/j.ultsonch.2019.05.012
[62] T.W. Chen, A. Sivasamy Vasantha, S.M. Chen, D.A. Al Farraj, M. Soliman Elshikh, R.M. Alkufeidy, M.M. Al Khulaifi, 59 (2019) 1-8.. https://doi.org/10.1016/j.ultsonch.2019.104718
[63] F.M. Courtel, Y. Abu-Lebdeh, I.J. Davidson, Electrochim. Acta 71 (2012) 123-127.. https://doi.org/10.1016/j.electacta.2012.03.108
[64] S.M. Ibrahim, S.A. Halim, J. Mol. Liq. 339 (2021) 116652.. https://doi.org/10.1016/j.molliq.2021.116652
[65] H. Qiu, T. Du, J. Wu, Y. Wang, J. Liu, S. Ye, S. Liu, Dalton Trans. 47 (2018) 6934-6941.. https://doi.org/10.1039/C8DT00893K
[66] M. Ranjbar-Azad, M. Behpour, J. Mater. Sci. Mater. Electron. 32 (2021) 18043-18056.. https://doi.org/10.1007/s10854-021-06346-y
[67] E. Tamilalagan, M. Akilarasan, S.M. Chen, T.W. Chen, Y.C. Huang, Q. Hao, W. Lei, Ultrason. Sonochem. 67 (2020) 105164.. https://doi.org/10.1016/j.ultsonch.2020.105164
[68] M. Vangari, T. Pryor, L. Jiang,J. Energy Eng. 139 (2013) 72-79.. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000102
[69] M. Setoodehkhah, S. Momeni, 18th Iranian Chemistry Congress- Semnan.
[70]Yong X. Gan , Ahalapitiya H. Jayatissa,Zhen Yu, Xi Chen , and Mingheng L, Journal of Nanomaterial, January 202
[71] L. Peng, Z. Fang, Y. Zhu, C. Yan, G. Yu, Adv. Energy Mater. 8 (2018) 1-19.. https://doi.org/10.1002/aenm.201702179
[72] P.T. Shibeshi, D. Parajuli, N. Murali, Chem. Phys. 561 (2022) 111617.. https://doi.org/10.1016/j.chemphys.2022.111617
[73] S. Tajik, H. Beitollahi, Z. Dourandish, P. Mohammadzadeh Jahani, I. Sheikhshoaie, M.B. Askari, P. Salarizadeh, F.G. Nejad, D. Kim, S.Y. Kim, R. S. Varma, M. Shokouhimehr, Electroanalysis 34 (2022) 1065-1091.. https://doi.org/10.1002/elan.202100393
[74] D. Wang, C. Duan, H. He, Z. Wang, R. Zheng, H. Sun, Y. Liu, C. Liu, J. Colloid Interface Sci. 646 (2023) 89-97.. https://doi.org/10.1016/j.jcis.2023.05.043
[75] D. Yassen, F. Othman, A. Abdul Hamead, Eng. Technol. J. 40 (2022) 862-868.. https://doi.org/10.30684/etj.v40i6.2104
[76] X. Yin, J. Liu, J. Ma, C. Zhang, P. Chen, M. Que, Y. Yang, W. Que, C. Niu, J. Shao, J. Power Sources 329 (2016) 398-405.. https://doi.org/10.1016/j.jpowsour.2016.08.102
[77] T.R. Bastami, M.H. Entezari,. Sonochem. 19 (2012) 830-840.. https://doi.org/10.1016/j.ultsonch.2011.11.019
[78] J.H. Lee, G. Yang, C.-H. Kim, R.L. Mahajan, S.-Y. Lee, S.-J. Park, Energy Environ. Sci. 15 (2022) 2233-2258.. https://doi.org/10.1039/D1EE03567C
[79] Q. Ma, M. Liu, F. Cui, J. Zhang, T. Cui, Carbon 204 (2023) 336-345.. https://doi.org/10.1016/j.carbon.2022.12.066
[80] S. Lin, J. Tang, K. Zhang, T.S. Suzuki, Q. Wei, M. Mukaida, Y. Mukaida, H. Zhang, X. Mamiya, L.C. Qin Yu, J. Power Sources 482 (2021).. https://doi.org/10.1016/j.jpowsour.2020.228995
[81] T. Doi, Y. Shimizu, M. Hashinokuchi, M. Inaba, J. Electrochem. Soc. 163 (2016) A2211.. https://doi.org/10.1149/2.0331610jes
[82] Y. Chen, C. Kang, L. Ma, L. Fu, G. Li, Q. Hu, Q. Liu, Chem. Eng. J. 417 (2021) 129243.. https://doi.org/10.1016/j.cej.2021.129243
[83] C. Guan, A. Sumboja, H. Wu, W. Ren, X. Liu, H. Zhang, Z. Liu, C. Cheng, S. J. Pennycook, J. Wang, Adv. Mater. 29 (44) (2017).. https://doi.org/10.1002/adma.201704117
[84] L. Shahriary, A.A. Athawale, Int. J. Renew. Energy Environ. Eng. 2 (1) (2014) 58-63.. https://doi.org/10.1155/2014/903872
[85] Y. Ji, Y. Deng, F. Chen, Z. Wang, Y. Lin, Z. Guan, Carbon 156 (2020) 359-369.. https://doi.org/10.1016/j.carbon.2019.09.064
[86] Y. Lu, L. Li, D. Chen, G. Shen, J. Mater. Chem. A 5 (47) (2017) 24981-24988.. https://doi.org/10.1039/C7TA06437C
[87] Y. Ouyang, X. Xia, H. Ye, L. Wang, X. Jiao, W. Lei, Q. Hao, ACS Appl. Mater. Interfaces 10 (4) (2018) 3549-3561.. https://doi.org/10.1021/acsami.7b16021
[88] G. Wei, L. Yan, H. Huang, F. Yan, X. Liang, S. Xu, Z. Lan, W. Zhou, J. Guo, Appl. Surf. Sci. 538 (2021) 147932.. https://doi.org/10.1016/j.apsusc.2020.147932
[89] Y. Liu, X. Cao, D. Jiang, D. Jia, J. Liu, J. Mater. Chem. A 6 (22) (2018) 10474-10483.. https://doi.org/10.1039/C8TA00945G
[90] V. Modafferi, S. Santangelo, M. Fiore, E. Fazio, C. Triolo, S. Patan’ e, R. Ruffo, M. G. Musolino, Transition metal oxides on reduced graphene oxide nanocomposites: evaluation of physicochemical properties, J. Nanomater. 2019 (2019).. https://doi.org/10.1155/2019/1703218
[91] A.A. Yadav, Influence of electrode mass-loading on the properties of spray deposited Mn3O4 thin films for electrochemical supercapacitors, Thin Solid Films 608 (2016) 88-96.. https://doi.org/10.1016/j.tsf.2016.04.023
[92] G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z. Bao, Solution-processed graphene/MnO2 nanostructured textiles for high- performance electrochemical capacitors, Nano Lett. 11 (2011) 2905-2911.. https://doi.org/10.1021/nl2013828
[93] B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical supercapacitors for energy storage and conversion, in: Handbook of Clean Energy Systems, John Wiley & Sons, Ltd., 2015, pp. 1-25.. https://doi.org/10.1002/9781118991978.hces112
[96] Z. Cao, Y. Zhang, Y. Cui, J. Gu, Z. Du, Y. Shi, K. Shen, H. Chen, B. Li, S. Yang, Harnessing the unique features of 2D materials toward dendrite-free metal anodes, Energy Environ. Mater. 5 (2022) 45-67.. https://doi.org/10.1002/eem2.12165
[97] Mingjin Cui and Xiangkang Meng Overview of transition metal-based composite materials for supercapacitor electrodes Nanoscale Adv., 2020, 2,5516. https://doi.org/10.1039/D0NA00573H
[98] Meenaketan Sethi, U. Sandhya Shenoy, Selvakumar Muthu, and D. Krishna Bhat, Front. Mater. Sci., February 2020
[99] Xingxing Zhu, Mengyao Sun, Rui Zhao, Yingqi Li, Bo Zhang, Yingli Zhang, Xingyou Lang, Yongfu Zhu and Qing Jiang, J. Nanoscale Advances, 7, May 2020