Carbon Nanotube based Catalysts for Energy Storage Studies: Synthesis and Electrochemical Analysis
LAVEENA Mariet Veigas, ANISHA Guha, HERI SEPTYA Kusuma, MOTHI Krishna Mohan
Energy storage technologies are pivotal in transitioning to sustainable energy solutions. Catalysts improve the energy storage efficiency, enhancing reaction kinetics and enabling advanced electrochemical processes. Carbon nanotubes (CNTs) are noteworthy catalyst materials due to their exceptional electrical conductivity, large surface area, and unique structural properties. This chapter provides a thorough overview of Carbon nanotube-based catalysts for energy storage applications, covering their synthesis, functionalization, electrochemical characterization, and practical implementations. The synthesis of carbon nanotube-based catalysts is examined, focusing on methods like chemical vapor deposition (CVD), arc discharge, laser ablation, and plasma-enhanced synthesis. Functionalization techniques, including surface modification, metal/non-metal doping, composite formation with metal oxides and conducting polymers, are examined to understand their role in enhancing catalytic performance. Electrochemical analysis is crucial in evaluating the efficiency of carbon nanotube-based catalysts. This chapter deals with essential techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry, and Tafel analysis, emphasizing their role in understanding charge storage mechanisms. The application of carbon nanotube-based catalysts in supercapacitors, lithium-ion/sodium-ion batteries, fuel cells, and hydrogen evolution reactions is explored, discussing their impact on energy storage performance. Despite their advantages, challenges in areas such as large-scale synthesis, stability, and cost remain a point of concern. The chapter concludes by discussing future directions and the potential impact of CNT-based catalysts in advancing next-generation energy storage technologies.
Keywords
Carbon Nanotubes, Electrocatalyst, Energy Storage, Electrochemical Analysis, Synthesis
Published online 10/20/2025, 17 pages
Citation: LAVEENA Mariet Veigas, ANISHA Guha, HERI SEPTYA Kusuma, MOTHI Krishna Mohan, Carbon Nanotube based Catalysts for Energy Storage Studies: Synthesis and Electrochemical Analysis, Materials Research Foundations, Vol. 182, pp 70-86, 2025
DOI: https://doi.org/10.21741/9781644903797-6
Part of the book on Electrocatalysts and Advanced Materials for Sustainable Energy Storage
References
[1] M. Li, Z. Li, Q. Lin, J. Cao, F. Liu, S. Kawi, Synthesis strategies of carbon nanotube supported and confined catalysts for thermal catalysis, Chemical Engineering Journal 431 (2022) 133970. https://doi.org/10.1016/j.cej.2021.133970
[2] C. Sathiskumar, S. Karthikeyan, Recycling of waste tires and its energy storage application of by-products –a review, Sustainable Materials and Technologies 22 (2019) e00125. https://doi.org/10.1016/j.susmat.2019.e00125
[3] P. Misra, D. Casimir, R. Garcia-Sanchez, Raman Spectroscopy and Molecular Dynamics Simulation Studies of Carbon Nanotubes, in: Environmental Science and Engineering, Elsevier, 2014: pp. 507–510. https://doi.org/10.1007/978-3-319-03002-9_127
[4] R. Sharma, A.K. Sharma, V. Sharma, Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics, Cogent Engineering 2 (2015) 1094017. https://doi.org/10.1080/23311916.2015.1094017
[5] M. Kim, S. Osone, T. Kim, H. Higashi, T. Seto, Synthesis of nanoparticles by laser ablation: A review, KONA Powder and Particle Journal 2017 (2017) 80–90. https://doi.org/10.14356/kona.2017009
[6] Y. Sani, R.S. Azis, I. Ismail, Y. Yaakob, J. Mohammed, Enhanced electromagnetic microwave absorbing performance of carbon nanostructures for RAMs: A review, Applied Surface Science Advances 18 (2023) 100455. https://doi.org/10.1016/j.apsadv.2023.100455
[7] Y. Sani, R.S. Azis, I. Ismail, Y. Yaakob, J. Mohammed, Enhanced electromagnetic microwave absorbing performance of carbon nanostructures for RAMs: A review, Applied Surface Science Advances 18 (2023) 100455. https://doi.org/10.1016/j.apsadv.2023.100455
[8] X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers, Carbon 168 (2020) 606–623. https://doi.org/10.1016/j.carbon.2020.07.028
[9] D. Khalafallah, R. Sarkar, M. Demir, K.A. Khalil, Z. Hong, A.A. Farghaly, Heteroatoms-doped carbon nanotubes for energy applications, in: Handbook of Carbon Nanotubes, Springer, 2022: pp. 485–523. https://doi.org/10.1007/978-3-030-91346-5_68
[10] K. Sheoran, H. Kaur, S.S. Siwal, A.K. Saini, D.V.N. Vo, V.K. Thakur, Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application, Chemosphere 299 (2022) 134364. https://doi.org/10.1016/j.chemosphere.2022.134364
[11] N. Puri, A. Gupta, A review on design and mechanism approaches of metal-organic framework composites for supercapacitance performance, Coordination Chemistry Reviews 540 (2025) 216772. https://doi.org/10.1016/j.ccr.2025.216772
[12] A. Tundwal, H. Kumar, B.J. Binoj, R. Sharma, G. Kumar, R. Kumari, A. Dhayal, A. Yadav, D. Singh, P. Kumar, Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review, RSC Advances 14 (2024) 9406–9439. https://doi.org/10.1039/d3ra08312h
[13] L.R. Bard, Allen J., Faulkner, Fundamentals and Applications Plasmonics : Fundamentals and Applications, John Wiley & Sons, 2001.
[14] S. Bashir, P. Hanumandla, H.Y. Huang, J.L. Liu, Nanostructured materials for advanced energy conversion and storage devices: Safety implications at end-of-life disposal, Nanostructured Materials for Next-Generation Energy Storage and Conversion: Fuel Cells 4 (2018) 517–542. https://doi.org/10.1007/978-3-662-56364-9_18
[15] Y. Yan, J. Miao, Z. Yang, F.X. Xiao, H. Bin Yang, B. Liu, Y. Yang, Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications, Chemical Society Reviews 44 (2015) 3295–3346. https://doi.org/10.1039/c4cs00492b
[16] Z. Qi, Electrochemical methods for catalyst activity evaluation, in: PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Springer, 2008: pp. 547–607. https://doi.org/10.1007/978-1-84800-936-3_11
[17] D. Diamond, Analytical electrochemistry, TrAC Trends in Analytical Chemistry 15 (1996) X–XI. https://doi.org/10.1016/s0165-9936(96)90116-8
[18] E.M. Espinoza, J.A. Clark, J. Soliman, J.B. Derr, M. Morales, V.I. Vullev, Practical Aspects of Cyclic Voltammetry: How to Estimate Reduction Potentials When Irreversibility Prevails, Journal of The Electrochemical Society 166 (2019) H3175–H3187. https://doi.org/10.1149/2.0241905jes
[19] H. Beitollahi, F. Movahedifar, S. Tajik, S. Jahani, A Review on the Effects of Introducing CNTs in the Modification Process of Electrochemical Sensors, Electroanalysis 31 (2019) 1195–1203. https://doi.org/10.1002/elan.201800370
[20] R. Kulkarni, L.P. Lingamdinne, J.R. Koduru, R.R. Karri, S.K. Kailasa, N.M. Mubarak, Y.Y. Chang, M.H. Dehghani, Exploring the recent cutting-edge applications of CNTs in energy and environmental remediation: Mechanistic insights and remarkable performance advancements, Journal of Environmental Chemical Engineering 12 (2024) 113251. https://doi.org/10.1016/j.jece.2024.113251
[21] K. Ariyoshi, A. Mineshige, M. Takeno, T. Fukutsuka, T. Abe, S. Uchida, Z. Siroma, Electrochemical Impedance Spectroscopy Part 2: Applications†, Electrochemistry 90 (2022) 102008. https://doi.org/10.5796/electrochemistry.22-66080
[22] 전종한, Study on FC-CVD-Synthesized CNT Assemblies for Energy Storage and Conversion, (2023).
[23] M. Tertiş, A. Florea, B. Feier, I.O. Marian, L. Silaghi-Dumitrescu, A. Cristea, R. Səndulescu, C. Cristea, Electrochemical impedance studies on single and multi-walled carbon nanotubes – Polymer nanocomposites for biosensors development, Journal of Nanoscience and Nanotechnology 15 (2015) 3385–3393. https://doi.org/10.1166/jnn.2015.10208
[24] N.E. Tolouei, S. Ghamari, M. Shavezipur, Development of circuit models for electrochemical impedance spectroscopy (EIS) responses of interdigitated MEMS biochemical sensors, Journal of Electroanalytical Chemistry 878 (2020) 114598. https://doi.org/10.1016/j.jelechem.2020.114598
[25] Y.S. Choudhary, L. Jothi, G. Nageswaran, Electrochemical Characterization, in: Spectroscopic Methods for Nanomaterials Characterization, Elsevier, 2017: pp. 19–54. https://doi.org/10.1016/B978-0-323-46140-5.00002-9
[26] H.J. Engell, Stability and breakdown phenomena of passivating films, Electrochimica Acta 22 (1977) 987–993. https://doi.org/10.1016/0013-4686(77)85010-X
[27] T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion, Scientific Reports 5 (2015) 13801. https://doi.org/10.1038/srep13801
[28] N.B. Mansor, Development of Catalysts and Catalyst Supports for Polymer Electrolyte Fuel Cells, (2014) 164.
[29] L.R. Bard, Allen J., Faulkner, Fundamentals and Applications Plasmonics : Fundamentals and Applications, John Wiley & Sons, 2001.
[30] J. Ni, Y. Li, Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage, Advanced Energy Materials 6 (2016) 1600278. https://doi.org/10.1002/aenm.201600278
[31] K. Jiang, R.A. Gerhardt, Fabrication and Supercapacitor Applications of Multiwall Carbon Nanotube Thin Films, C 7 (2021) 70. https://doi.org/10.3390/c7040070
[32] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group 7 (2010) 138–147. https://doi.org/10.1142/9789814317665_0021
[33] U. Nisar, R.A. Shakoor, R. Essehli, R. Amin, B. Orayech, Z. Ahmad, P.R. Kumar, R. Kahraman, S. Al-Qaradawi, A. Soliman, Sodium intercalation/de-intercalation mechanism in Na4MnV(PO4)3 cathode materials, Electrochimica Acta 292 (2018) 98–106. https://doi.org/10.1016/j.electacta.2018.09.111
[34] S.K. Rath, S. Dubey, G.S. Kumar, S. Kumar, A.K. Patra, J. Bahadur, A.K. Singh, G. Harikrishnan, T.U. Patro, Multi-walled CNT-induced phase behaviour of poly (vinylidene fluoride) and its electro-mechanical properties, Journal of Materials Science 49 (2014) 103–113.
[35] G. Wu, P. Tan, D. Wang, Z. Li, L. Peng, Y. Hu, C. Wang, W. Zhu, S. Chen, W. Chen, High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes, Scientific Reports 7 (2017) 43676. https://doi.org/10.1038/srep43676
[36] S. Trasatti, O.A. Petrii, Real surface area measurements in electrochemistry, Journal of Electroanalytical Chemistry 327 (1992) 353–376. https://doi.org/10.1016/0022-0728(92)80162-W
[37] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell, Journal of Power Sources 155 (2006) 95–110. https://doi.org/10.1016/j.jpowsour.2006.01.030
[38] M.R. Berber, I.H. Hafez, T. Fujigaya, N. Nakashima, A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes, Scientific Reports 5 (2015) 16711. https://doi.org/10.1038/srep16711
[39] T.W. Chen, S.M. Chen, G. Anushya, R. Kannan, P. Veerakumar, A.G. Al-Sehemi, V. Mariyappan, S. Alargarsamy, M.M. Alam, T.C. Mahesh, R. Ramachandran, P. Kalimuthu, Electrochemical energy storage applications of functionalized carbon-based nanomaterials: An overview, International Journal of Electrochemical Science 19 (2024) 100548. https://doi.org/10.1016/j.ijoes.2024.100548
[40] A.T. Lawal, Recent application of carbon nanotube in energy storage devices, Fujnas (2024) 100470.
[41] G.B. Pour, H. Ashourifar, L.F. Aval, S. Solaymani, CNTs-Supercapacitors: A Review of Electrode Nanocomposites Based on CNTs, Graphene, Metals, and Polymers, Symmetry 15 (2023) 1179. https://doi.org/10.3390/sym15061179
[42] G. Wang, H. Li, Q. Zhang, Z. Yu, M. Qu, The study of carbon nanotubes as conductive additives of cathode in lithium ion batteries, Journal of Solid State Electrochemistry 15 (2011) 759–764. https://doi.org/10.1007/s10008-010-1143-4
[43] F. Tao, Y. Liu, X. Ren, A. Jiang, H. Wei, X. Zhai, F. Wang, H.R. Stock, S. Wen, F. Ren, Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: Recent advances and perspectives, Journal of Alloys and Compounds 873 (2021) 159742. https://doi.org/10.1016/j.jallcom.2021.159742
[44] F. Tao, Y. Liu, X. Ren, A. Jiang, H. Wei, X. Zhai, F. Wang, H.R. Stock, S. Wen, F. Ren, Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: Recent advances and perspectives, Journal of Alloys and Compounds 873 (2021) 159742. https://doi.org/10.1016/j.jallcom.2021.159742
[45] N. V. Glebova, A.A. Nechitailov, A. Krasnova, Electrode material containing carbon nanotubes and its kinetic characteristics of oxygen electroreduction, Reaction Kinetics, Mechanisms and Catalysis 131 (2020) 599–612. https://doi.org/10.1007/s11144-020-01866-w
[46] S. Jessl, D. Beesley, S. Engelke, C.J. Valentine, J.C. Stallard, N. Fleck, S. Ahmad, M.T. Cole, M. De Volder, Carbon nanotube conductive additives for improved electrical and mechanical properties of flexible battery electrodes, Materials Science and Engineering: A 735 (2018) 269–274. https://doi.org/10.1016/j.msea.2018.08.033
[47] X. Zeng, S. Shahgaldi, S.K. Mitra, X. Li, Impact of carbon supports on the Pt-based catalyst activity and fuel cell performance under varied operational conditions, Energy Conversion and Management 326 (2025) 119496. https://doi.org/10.1016/j.enconman.2025.119496
[48] J.D. Sinniah, W.Y. Wong, K.S. Loh, R.M. Yunus, S.N. Timmiati, Perspectives on carbon-alternative materials as Pt catalyst supports for a durable oxygen reduction reaction in proton exchange membrane fuel cells, Journal of Power Sources 534 (2022) 231422. https://doi.org/10.1016/j.jpowsour.2022.231422
[49] P. Agrawal, S. Ebrahim, D. Ponnamma, Advancements in nanocarbon-based catalysts for enhanced fuel cell performance: a comprehensive review, International Journal of Energy and Water Resources (2024) 1–23. https://doi.org/10.1007/s42108-024-00324-w
[50] T. Rasheed, S. Munir, A. BaQais, M. Shahid, M.A. Amin, M.F. Warsi, S. Yousaf, Multi-walled carbon nanotubes with embedded nickel sulphide as an effective electrocatalyst for Bi-functional water splitting, International Journal of Hydrogen Energy 67 (2024) 373–380. https://doi.org/10.1016/j.ijhydene.2024.04.131
[51] S. Majumdar, S. Chaitoglou, J. Serafin, G. Farid, R. Ospina, Y. Ma, R. Amade Rovira, E. Bertran-Serra, Enhancing hydrogen evolution: Carbon nanotubes as a scaffold for Mo2C deposition via magnetron sputtering and chemical vapor deposition, International Journal of Hydrogen Energy 89 (2024) 977–989. https://doi.org/10.1016/j.ijhydene.2024.09.425
[52] S. Li, E. Li, X. An, X. Hao, Z. Jiang, G. Guan, Transition metal-based catalysts for electrochemical water splitting at high current density: Current status and perspectives, Nanoscale 13 (2021) 12788–12817. https://doi.org/10.1039/d1nr02592a
[53] P. Tripathi, A.K. Verma, A.S.K. Sinha, S. Singh, Graphene-Transition Metal Electrocatalysts for Sustainable Water Electrolysis, ChemistrySelect 9 (2024) e202403155. https://doi.org/10.1002/slct.202403155
[54] P. Agrawal, S. Ebrahim, D. Ponnamma, Advancements in nanocarbon-based catalysts for enhanced fuel cell performance: a comprehensive review, International Journal of Energy and Water Resources (2024) 1–23. https://doi.org/10.1007/s42108-024-00324-w
[55] R. Sharma, M. Almáši, R.C. Punia, R. Chaudhary, S.P. Nehra, M.S. Dhaka, A. Sharma, Solar-driven polymer electrolyte membrane fuel cell for photovoltaic hydrogen production, International Journal of Hydrogen Energy 48 (2023) 37999–38014. https://doi.org/10.1016/j.ijhydene.2022.12.175
[56] X. Wang, Z. Kong, J. Ye, C. Shao, B. Li, Hollow nitrogen-doped carbon nanospheres as cathode catalysts to enhance oxygen reduction reaction in microbial fuel cells treating wastewater, Environmental Research 201 (2021) 111603. https://doi.org/10.1016/j.envres.2021.111603
[57] Y. Nie, X. Xie, S. Chen, W. Ding, X. Qi, Y. Wang, J. Wang, W. Li, Z. Wei, M. Shao, Towards Effective Utilization of Nitrogen-Containing Active Sites: Nitrogen-doped Carbon Layers Wrapped CNTs Electrocatalysts for Superior Oxygen Reduction, Electrochimica Acta 187 (2016) 153–160. https://doi.org/10.1016/j.electacta.2015.11.011
[58] R. Oriňáková, A. Oriňák, Recent applications of carbon nanotubes in hydrogen production and storage, Fuel 90 (2011) 3123–3140. https://doi.org/10.1016/j.fuel.2011.06.051
[59] R. Oriňáková, A. Oriňák, Recent applications of carbon nanotubes in hydrogen production and storage, Fuel 90 (2011) 3123–3140. https://doi.org/10.1016/j.fuel.2011.06.051
[60] J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, A.S.C. Chan, Carbon nanotube–polyaniline hybrid materials, European Polymer Journal 38 (2002) 2497–2501.
[61] Y. Liang, H. Zhang, B. Yi, Z. Zhang, Z. Tan, Preparation and characterization of multi-walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells, Carbon 43 (2005) 3144–3152. https://doi.org/10.1016/j.carbon.2005.06.017
[62] C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y. Yan, Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes, Nano Letters 4 (2004) 345–348. https://doi.org/10.1021/nl034952p
[63] N.A. Kamaruzaman, W.M. Khairul, N. Md Saleh, F. Yusoff, Advancements in carbon-based transition metal compounds for enhanced hydrogen production via electrochemical water splitting, International Journal of Electrochemical Science 19 (2024) 100740. https://doi.org/10.1016/j.ijoes.2024.100740
[64] G.T.M. Kadja, M. Mualliful Ilmi, S. Mardiana, M. Khalil, F. Sagita, N.T.U. Culsum, A.T.N. Fajar, Recent advances of carbon nanotubes as electrocatalyst for in-situ hydrogen production and CO2 conversion to fuels, Results in Chemistry 6 (2023) 101037. https://doi.org/10.1016/j.rechem.2023.101037
[65] A. Kaushal, R. Alexander, J. Prakash, K. Dasgupta, Engineering challenges and innovations in controlled synthesis of CNT fiber and fabrics in floating catalyst chemical vapor deposition (FC-CVD) process, Diamond and Related Materials 148 (2024) 111474. https://doi.org/10.1016/j.diamond.2024.111474
[66] H. Li, G. Wang, Y. Wu, N. Jiang, K. Niu, Functionalization of Carbon Nanotubes in Polystyrene and Properties of Their Composites: A Review, Polymers 16 (2024) 770. https://doi.org/10.3390/polym16060770
[67] J. Dugeč, I. Škugor Rončević, N. Vladislavić, J. Radić, M. Buljac, M. Buzuk, The Interpretation of Carbon Nanotubes’ Electrochemistry: Electrocatalysis and Mass Transport Regime in the Apparent Promotion of Electron Transfer, Biosensors 15 (2025) 89. https://doi.org/10.3390/bios15020089
[68] R. Rao, C.L. Pint, A.E. Islam, R.S. Weatherup, S. Hofmann, E.R. Meshot, F. Wu, C. Zhou, N. Dee, P.B. Amama, J. Carpena-Nuñez, W. Shi, D.L. Plata, E.S. Penev, B.I. Yakobson, P.B. Balbuena, C. Bichara, D.N. Futaba, S. Noda, H. Shin, K.S. Kim, B. Simard, F. Mirri, M. Pasquali, F. Fornasiero, E.I. Kauppinen, M. Arnold, B.A. Cola, P. Nikolaev, S. Arepalli, H.M. Cheng, D.N. Zakharov, E.A. Stach, J. Zhang, F. Wei, M. Terrones, D.B. Geohegan, B. Maruyama, S. Maruyama, Y. Li, W.W. Adams, A.J. Hart, Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications, ACS Nano 12 (2018) 11756–11784. https://doi.org/10.1021/acsnano.8b06511
[69] M. El-Azazy, A.I. Osman, M. Nasr, Y. Ibrahim, N. Al-Hashimi, K. Al-Saad, M.A. Al-Ghouti, M.F. Shibl, A.H. Al-Muhtaseb, D.W. Rooney, A.S. El-Shafie, The interface of machine learning and carbon quantum dots: From coordinated innovative synthesis to practical application in water control and electrochemistry, Coordination Chemistry Reviews 517 (2024). https://doi.org/10.1016/j.ccr.2024.215976
[70] G. Chen, D.M. Tang, Machine Learning as a “Catalyst” for Advancements in Carbon Nanotube Research, Nanomaterials 14 (2024) 1688. https://doi.org/10.3390/nano14211688
[71] A.K. Madikere Raghunatha Reddy, A. Darwiche, M.V. Reddy, K. Zaghib, Review on Advancements in Carbon Nanotubes: Synthesis, Purification, and Multifaceted Applications †, Batteries 11 (2025). https://doi.org/10.3390/batteries11020071
[72] M. Tavakkoli, E. Flahaut, P. Peljo, J. Sainio, F. Davodi, E. V. Lobiak, K. Mustonen, E.I. Kauppinen, Mesoporous Single-Atom-Doped Graphene-Carbon Nanotube Hybrid: Synthesis and Tunable Electrocatalytic Activity for Oxygen Evolution and Reduction Reactions, ACS Catalysis 10 (2020) 4647–4658. https://doi.org/10.1021/acscatal.0c00352
[73] F. Davodi, M. Tavakkoli, J. Lahtinen, T. Kallio, Straightforward synthesis of nitrogen-doped carbon nanotubes as highly active bifunctional electrocatalysts for full water splitting, Journal of Catalysis 353 (2017) 19–27. https://doi.org/10.1016/j.jcat.2017.07.001
[74] B. Liu, J. Sun, J. Zhao, X. Yun, Hybrid graphene and carbon nanotube–reinforced composites: polymer, metal, and ceramic matrices, Advanced Composites and Hybrid Materials 8 (2025) 1. https://doi.org/10.1007/s42114-024-01074-3


