Architecture of MOF Composites for Efficient Supercapacitors

$40.00

Architecture of MOF Composites for Efficient Supercapacitors

J. MANOJ, RAMAKRISHNAN Vishnuraj, MURALI Rangarajan, R. SIVASUBRAMANIAN

Supercapacitors are considered a potential electrochemical energy storage technology possessing high power density, stability, good rate capability, and long cycle life. The applications of supercapacitors include UPS, flash cameras, and as a supplement to batteries in electric vehicles. Based on the charge storage mechanism, supercapacitors are classified into electrical double layer, pseudocapacitors, and hybrid capacitors (including battery type), respectively. Materials such as graphene, carbon nanotubes, activated carbon, etc., store a charge through a double layer formation, and on the other hand, metal oxides, conducting polymers, etc., exhibit pseudocapacitance behaviour. In this context, metal organic frameworks (MOF) are important due to their unique molecular structure and hybrid energy storage mechanism. This chapter deals with the evolution of MOFs in supercapacitor applications and the importance of different architectures in terms of structure for energy storage applications. The performance of various metal based organic frameworks for energy storage are discussed. The mechanism of charge storage using experimental and computational tools are highlighted. Finally, the challenges and prospects of MOF in supercapacitor applications are emphasized.

Keywords
Metal Organic Frameworks (MOF), Supercapacitors, Nanomaterials, Electrodes, Energy Storage

Published online 10/20/2025, 15 pages

Citation: J. MANOJ, RAMAKRISHNAN Vishnuraj, MURALI Rangarajan, R. SIVASUBRAMANIAN, Architecture of MOF Composites for Efficient Supercapacitors, Materials Research Foundations, Vol. 182, pp 12-26, 2025

DOI: https://doi.org/10.21741/9781644903797-2

Part of the book on Electrocatalysts and Advanced Materials for Sustainable Energy Storage

References
[1] H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems-Characteristics and comparisons, Renew. Sustain. Energy Rev. 12 (2008) 1221–1250. https://doi.org/10.1016/j.rser.2007.01.023
[2] P. Bhojane, Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding, J. Energy Storage 45 (2022) 103654. https://doi.org/10.1016/j.est.2021.103654
[3] G. Gautham Prasad, N. Shetty, S. Thakur, Rakshitha, K.B. Bommegowda, Supercapacitor technology and its applications: A review, IOP Conf. Ser. Mater. Sci. Eng. 561 (2019). https://doi.org/10.1088/1757-899X/561/1/012105
[4] S. Sharma, P. Chand, Supercapacitor and electrochemical techniques: A brief review, Results Chem. 5 (2023) 100885. https://doi.org/10.1016/j.rechem.2023.100885
[5] M. Haripriya, A.M. Ashok, S. Hussain, R. Sivasubramanian, Nanostructured MnCo2O4 as a high-performance electrode for supercapacitor application, Ionics (Kiel). 27 (2021) 325–337. https://doi.org/10.1007/s11581-020-03788-y
[6] M. Haripriya, R. Sivasubramanian, A.M. Ashok, S. Hussain, G. Amarendra, Hydrothermal synthesis of NiCo2O4-NiO nanorods for high performance supercapacitors, J. Mater. Sci. Mater. Electron. 30 (2019) 7497–7506. https://doi.org/10.1007/s10854-019-01063-z
[7] B. Chettiannan, E. Dhandapani, G. Arumugam, R. Rajendran, M. Selvaraj, Metal-organic frameworks: A comprehensive review on common approaches to enhance the energy storage capacity in supercapacitor, Coord. Chem. Rev. 518 (2024) 216048. https://doi.org/10.1016/j.ccr.2024.216048
[8] A.J. Fletcher, K.M. Thomas, M.J. Rosseinsky, Flexibility in metal-organic framework materials: Impact on sorption properties, J. Solid State Chem. 178 (2005) 2491–2510. https://doi.org/10.1016/j.jssc.2005.05.019
[9] D. Wang, H. Yao, J. Ye, Y. Gao, H. Cong, B. Yu, Metal-Organic Frameworks (MOFs): Classification, Synthesis, Modification, and Biomedical Applications, Small 2404350 (2024) 1–53. https://doi.org/10.1002/smll.202404350
[10] H. Furukawa, M.A. Miller, O.M. Yaghi, Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks, J. Mater. Chem. 17 (2007) 3197–3204. https://doi.org/10.1039/b703608f
[11] D. Li, A. Yadav, H. Zhou, K. Roy, P. Thanasekaran, C. Lee, Advances and Applications of Metal‐Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review, Glob. Challenges 8 (2024) 1–32. https://doi.org/10.1002/gch2.202300244
[12] P. Ananthi, K. Hemkumar, A. Pius, Antibacterial, Biodegradable Polymeric Films Loaded with Co-MOF/ZnS Nanoparticles for Food Packaging and Photo-Degradation Applications, ACS Food Sci. Technol. 4 (2024) 1462–1471. https://doi.org/10.1021/acsfoodscitech.4c00087
[13] D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dincǎ, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nat. Mater. 16 (2017) 220–224. https://doi.org/10.1038/nmat4766
[14] S.J. Shin, J.W. Gittins, C.J. Balhatchet, A. Walsh, A.C. Forse, Metal–Organic Framework Supercapacitors: Challenges and Opportunities, Adv. Funct. Mater. 2308497 (2023) 1–11. https://doi.org/10.1002/adfm.202308497
[15] L.H. Wee, M.R. Lohe, N. Janssens, S. Kaskel, J.A. Martens, Fine tuning of the metal-organic framework Cu 3(BTC) 2 HKUST-1 crystal size in the 100 nm to 5 micron range, J. Mater. Chem. 22 (2012) 13742–13746. https://doi.org/10.1039/c2jm31536j
[16] C. Wang, Y.V. Kaneti, Y. Bando, J. Lin, C. Liu, J. Li, Y. Yamauchi, Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion, Mater. Horizons 5 (2018) 394–407. https://doi.org/10.1039/c8mh00133b
[17] H. Liu, Y. Zhao, B. Huang, H. Liu, P. Zhang, W. Gu, T. Ma, Zn-Based Three-Dimensional Metal-Organic Framework for Selective Fluorescence Detection in Zwitterionic Ions, (2025) 1–14.
[18] S. Khan, S. Halder, S. Chand, A.K. Pradhan, C. Chakraborty, Co-containing metal-organic framework for high-performance asymmetric supercapacitors with functionalized reduced graphene oxide, Dalt. Trans. 52 (2023) 14663–14675. https://doi.org/10.1039/d3dt02314a
[19] S.S. Shalini, A.C. Bose, Design and development of diamond-shaped Silver-Trimesic acid based Metal-Organic framework for high-performance supercapacitor application, J. Electroanal. Chem. 951 (2023) 117895. https://doi.org/10.1016/j.jelechem.2023.117895
[20] S. Ghosh, A. De Adhikari, J. Nath, G.C. Nayak, H.P. Nayek, Lanthanide (III) Metal-Organic Frameworks: Syntheses, Structures and Supercapacitor Application, ChemistrySelect 4 (2019) 10624–10631. https://doi.org/10.1002/slct.201902614
[21] M. Shahbaz, S. Sharif, A. Shahzad, Z.S. Şahin, B. Riaz, S. Shahzad, Enhanced electrochemical performance of cerium-based metal organic frameworks derived from pyridine-2,4,6-tricarboxylic acid for energy storage devices, J. Energy Storage 88 (2024). https://doi.org/10.1016/j.est.2024.111463
[22] W. Zhang, H. Yin, Z. Yu, X. Jia, J. Liang, G. Li, Y. Li, K. Wang, Facile Synthesis of 4, 4′-biphenyl Dicarboxylic Acid-Based Nickel Metal Organic Frameworks with a Tunable Pore Size towards High-Performance Supercapacitors, Nanomaterials 12 (2022). https://doi.org/10.3390/nano12122062
[23] M.R. Tamtam, R. Koutavarapu, R. Wang, G.S. Choi, J. Shim, Cobalt–copper MOF: A high-performance and ecofriendly electrode material for symmetric and asymmetric supercapacitors, Mater. Sci. Semicond. Process. 188 (2025) 109220. https://doi.org/10.1016/j.mssp.2024.109220
[24] S. Kanthasamy, M. Subramani, S. Ramasamy, S. Thangavelu, Unveiling the structure-property relationships of bimetallic nickel molybdenum metal organic framework for pseudocapacitor electrode materials: A combined approach of experimental and theoretical study, Chem. Eng. J. 495 (2024) 153691. https://doi.org/10.1016/j.cej.2024.153691
[25] S. Fatima, H. Shabbir, R. Sharif, H.M. Fahad, J. Yang, F. Shaheen, R. Wahab, S. Akbar, V. Perumal, A novel binary composite of CuCoNi-MOF/MoO3 with exceptional capacitance as electrode material for supercapacitors, J. Energy Storage 99 (2024). https://doi.org/10.1016/j.est.2024.113300
[26] R. Bhosale, S. Bhosale, D. Narale, C. Jambhale, S. Kolekar, Construction of Well-Defined Two-Dimensional Architectures of Trimetallic Metal-Organic Frameworks for High-Performance Symmetric Supercapacitors, Langmuir 39 (2023) 12075–12089. https://doi.org/10.1021/acs.langmuir.3c01337
[27] S.A. Patil, P.K. Katkar, M. Kaseem, G. Nazir, S.W. Lee, H. Patil, H. Kim, V.K. Magotra, H.B. Thi, H. Im, N.K. Shrestha, Cu@Fe-Redox Capacitive-Based Metal–Organic Framework Film for a High-Performance Supercapacitor Electrode, Nanomaterials 13 (2023). https://doi.org/10.3390/nano13101587
[28] A. Al Mahmud, A.H. Alshatteri, H.S. Alhasan, W. Al Zoubi, K.M. Omer, M.R. Thalji, Copper-doped strontium metal-organic framework: Dual-function active material for supercapacitor and oxygen evolution reaction, Electrochim. Acta 503 (2024) 144857. https://doi.org/10.1016/j.electacta.2024.144857
[29] V. Shukla, N. Waris, M.Z. Khan, K.A. Siddiqui, Fabrication of an iron-doped Fe@Zn-MOF composite: empowering enhanced colorimetric recognition and energy storage performance, New J. Chem. 48 (2024) 11518–11529. https://doi.org/10.1039/d4nj01896f
[30] S.S. Patil, A.C. Khandare, B.S. Khillare, P.R. Kagne, V.N. Narwade, T. Hianik, M.D. Shirsat, Incorporating Ag into Nd-Succinate MOF: Tunned electrochemical supercapacitor behaviour of Ag modified Nd-Succinate and electrochemical reaction mechanism, Colloids Surfaces A Physicochem. Eng. Asp. 703 (2024) 1–10. https://doi.org/10.1016/j.colsurfa.2024.135215
[31] P. Rajkumar, V. Thirumal, A.S. Rasappan, M.S. Iyer, S. Asaithambi, K. Yoo, J. Kim, Electrochemically enhanced battery-type Ni substituted CaMo-MOF electrodes: Towards futuristic energy storage system, J. Energy Storage 80 (2024) 110284. https://doi.org/10.1016/j.est.2023.110284
[32] H.B. Albargi, A. Abbas, M. Zeeshan, M.W. Iqbal, N.A. Ismayilova, M.A. Sunny, H. Hassan, T. Abbas, Design of iron-based metal-organic framework (Fe-MOF) and molybdenum telluride (MoTe2) nanohybrids for enhanced energy storage and hydrogen evolution reactions, Inorg. Chem. Commun. 173 (2025) 113791. https://doi.org/10.1016/j.inoche.2024.113791
[33] A.U. Rehman, N. Muzaffar, I. Barsoum, A.M. Afzal, M. Ali, M.W. Iqbal, Z. Ahmad, S. Mumtaz, A.A.A. Bahajjaj, S.A. Munnaf, Designing of efficient CoLa2O4/V-Ag-MOF hybrid electrode for energy storage, hydrogen evolution reaction, and chemical sensors, Fuel 384 (2025) 133991. https://doi.org/10.1016/j.fuel.2024.133991
[34] N. Muzaffar, I. Barsoum, A.M. Afzal, M.W. Iqbal, Z. Ahmad, A.S. Alqarni, S.A.M. Issa, H.M.H. Zakaly, Exploring the electrochemical potential of MoLa2O4/rGO/Co-MOF nanocomposites in energy storage and monosodium glutamate detection, Fuel 385 (2025) 134131. https://doi.org/10.1016/j.fuel.2024.134131
[35] S.A. Al-Thabaiti, M.M.M. Mostafa, A.I. Ahmed, R.S. Salama, Synthesis of copper/chromium metal organic frameworks – Derivatives as an advanced electrode material for high-performance supercapacitors, Ceram. Int. 49 (2023) 5119–5129. https://doi.org/10.1016/j.ceramint.2022.10.029
[36] M.A. Sunny, H. Hassan, B.S. Almutairi, E. Umar, M.W. Iqbal, A.K. Alqorashi, H. Alrobei, N. Ahmad, N.A. Ismayilova, Synthesis of Eco-friendly Zn-Ni bimetallic MOFs with biodegradable glycolic acid ligands for enhanced supercapacitor performance and hydrogen evolution reaction, Phys. Scr. 99 (2024). https://doi.org/10.1088/1402-4896/ad74a4
[37] R. Vanaraj, B. Arumugam, G. Mayakrishnan, R. Kanthapazham, S.C. Kim, Specific Capacitance Enhancement of Metal-Organic Framework (MOF) by Boosting Intramolecular Charge Transfer Mechanism, ACS Appl. Energy Mater. (2024). https://doi.org/10.1021/acsaem.4c01241
[38] U.A. Khan, N. Iqbal, T. Noor, R. Ahmad, A. Ahmad, J. Gao, Z. Amjad, A. Wahab, Cerium based metal organic framework derived composite with reduced graphene oxide as efficient supercapacitor electrode, J. Energy Storage 41 (2021) 102999. https://doi.org/10.1016/j.est.2021.102999
[39] J. Xu, Y. Yang, Y. Wang, J. Cao, Z. Chen, Enhanced electrochemical properties of manganese-based metal organic framework materials for supercapacitors, J. Appl. Electrochem. 49 (2019) 1091–1102. https://doi.org/10.1007/s10800-019-01352-9
[40] N.S. Punde, C.R. Rawool, A.S. Rajpurohit, S.P. Karna, A.K. Srivastava, Hybrid Composite Based on Porous Cobalt-Benzenetricarboxylic Acid Metal Organic Framework and Graphene Nanosheets as High Performance Supercapacitor Electrode, ChemistrySelect 3 (2018) 11368–11380. https://doi.org/10.1002/slct.201802721
[41] S. Sundriyal, S. Mishra, A. Deep, Study of manganese-1,4-benzenedicarboxylate metal organic framework electrodes based solid state symmetrical supercapacitor, Energy Procedia 158 (2019) 5817–5824. https://doi.org/10.1016/j.egypro.2019.01.546
[42] M. Majumder, R.B. Choudhary, A.K. Thakur, A. Khodayari, M. Amiri, R. Boukherroub, S. Szunerits, Aluminum based metal-organic framework integrated with reduced graphene oxide for improved supercapacitive performance, Electrochim. Acta 353 (2020) 136609. https://doi.org/10.1016/j.electacta.2020.136609
[43] D.B. Bailmare, K.N. Pande, D. Peshwe, S. Chopra, A.D. Deshmukh, Boosting capacitive performance of electrode material by facile incorporation of phthalic acid ligand-based bimetallic MOF for supercapacitors, Electrochim. Acta 503 (2024) 144856. https://doi.org/10.1016/j.electacta.2024.144856
[44] K. Xu, H. Shao, Z. Lin, C. Merlet, G. Feng, J. Zhu, P. Simon, Computational Insights into Charge Storage Mechanisms of Supercapacitors, Energy Environ. Mater. 3 (2020) 235–246. https://doi.org/10.1002/eem2.12124
[45] S. Cheng, W. Gao, Z. Cao, Y. Yang, E. Xie, J. Fu, Selective Center Charge Density Enables Conductive 2D Metal−Organic Frameworks with Exceptionally High Pseudocapacitance and Energy Density for Energy Storage Devices, Adv. Mater. 34 (2022) 1–11. https://doi.org/10.1002/adma.202109870