Biomass to Energy: A Sustainable Pathway for Energy Storage
M. PRIYADARSHINI, P. VIJAYALAKSHMI
In this chapter, an overview of materials derived from biomass as an alternative to environmentally friendly energy storage and conversion devices are presented. The classification and resources of biomass suitable for energy storage and conversion devices are also discussed. Additionally, the detailed explanation of various conversion techniques adopted to obtain materials from biomass resources are explained in detail. It also provides a detailed explanation of different biomass-derived materials and their applications in supercapacitors, metal-ion batteries, redox-flow batteries, and fuel cells. Furthermore, the advantages and disadvantages of biomass-derived materials are compared with those of commercial materials.
Keywords
Biomass, Electrochemical Energy Storage, Supercapacitors, Li-ion Batteries, Redox-flow Batteries, Fuel Cell
Published online 10/20/2025, 14 pages
Citation: M. PRIYADARSHINI, P. VIJAYALAKSHMI, Biomass to Energy: A Sustainable Pathway for Energy Storage, Materials Research Foundations, Vol. 182, pp 160-173, 2025
DOI: https://doi.org/10.21741/9781644903797-11
Part of the book on Electrocatalysts and Advanced Materials for Sustainable Energy Storage
References
[1] Q. Hassan, P. Viktor, T. J. Al-Musawi, B. M. Ali, S. Algburi, H. M. Alzoubi, A. K. Al-Jiboory, A. Z. Sameen, H. M. Salman, M. Jaszczur, The renewable energy role in the global energy Transformations, Renew. Energy Focus. 46 (2024) 100545.. https://doi.org/10.1016/j.ref.2024.100545
[2] V. Solanki, S. Birman, Nature-Driven Renewable Energy Systems for Sustainable Development. In: P. Singh, P. Srivastava, A. Sorokin, (eds) Nature-Based Solutions in Achieving Sustainable Development Goals. Springer, Cham, 2024, pp. 131 – 166.. https://doi.org/10.1007/978-3-031-76128-7_5
[3] R. Jayabal, Towards a carbon-free society: Innovations in green energy for a sustainable future, 24 (2024) 103121.. https://doi.org/10.1016/j.rineng.2024.103121
[4] S. Thomas, M. Hosur, D. Pasquini, C. J. Chirayil (Eds), Handbook of Biomass, Springer Singapore, pp. XXVII, 1574.
[5] L. Zhang, Z. Liu, G. Cui, L. Chen, Biomass-derived materials for electrochemical energy storages, Prog. Polym. Sci. 43 (2015) 136 – 164.. https://doi.org/10.1016/j.progpolymsci.2014.09.003
[6] R. Millati, R. B. Cahyono, T. Ariyanto, I. N. Azzahrani, R. Utami Putri, M. J. Taherzadeh, Chapter 1 – Agricultural, Industrial, Municipal, and Forest Wastes: An Overview, M. J. Taherzadeh, K. Bolton, J. Wong, A. Pandey, (eds), Sustainable Resource Recovery and Zero Waste Approaches, Elsevier, 2019, pp. 1-22.. https://doi.org/10.1016/B978-0-444-64200-4.00001-3
[7] S. K. Tiwari, M. Bystrzejewski, A. D. Adhikari, A. Huczko, N. Wang, Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications, Prog. Energy Combust. Sci. 92 (2022) 101023.. https://doi.org/10.1016/j.pecs.2022.101023
[8] A. Ephraim, P. Arlabosse, A. Nzihou, D. P. Minh, P. Sharrock, Biomass Categories. A. Nzihou, (eds) Handbook on Characterization of Biomass, Biowaste and Related By-products. Springer, Cham, 2020.. https://doi.org/10.1007/978-3-030-35020-8_1
[9] P. Adams, T. Bridgwater, A. L. Langton, A. Ross, I. Watson, Biomass conversion technologies. In: Greenhouse Gas Balances of Bioenergy Systems. Elsevier, Academic Press, 2018, pp. 107-139.. https://doi.org/10.1016/B978-0-08-101036-5.00008-2
[10] N. N. Nguyen, A. V. Nguyen, M. Konarova, Converting rice husk biomass into value-added materials for low-carbon economies: Current progress and prospect toward more sustainable practices, J. Environ. Chem. Eng. 13 (2025) 115499.. https://doi.org/10.1016/j.jece.2025.115499
[11] D. Bisen, A. P. S. Chouhan a, M. Pant, S. Chakma, Advancement of thermochemical conversion and the potential of biomasses for production of clean energy: A review, Renew. Sustain. Energy Rev. 208 (2025), 115016.. https://doi.org/10.1016/j.rser.2024.115016
[12] S. K. Parakh, Z. Tian, J. Z. E. Wong, Y. W. Tong, From Microalgae to Bioenergy: Recent Advances in Biochemical Conversion Processes, Fermentation, 9 (2023) 529.. https://doi.org/10.3390/fermentation9060529
[13] B. Basak, R. Kumar, A.V. S. L. S. Bharadwaj, T. H. Kim, J. R. Kim, M. Jang, S. E. Oh, H-S. Roh, B-H. Jeon, Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production, Bioresour. Technol. 369 (2023) 128413.. https://doi.org/10.1016/j.biortech.2022.128413
[14] X. Yang, Y. Zhang, P. Sun, C. Peng, A review on renewable energy: Conversion and utilization of biomass, Smart Molecules, 2 (2024) e20240019.. https://doi.org/10.1002/smo.20240019
[15] Y. Wang, M. Zhang, X. Shen, H. Wang, H. Wang, K. Xia, Z. Yin, Y. Zhang, Biomass-Derived Carbon Materials: Controllable Preparation and Versatile Applications, Small, 17 (2021) 2008079.. https://doi.org/10.1002/smll.202008079
[16] T. Khandaker, T. Islam, A. Nandi, Md. Al A. M. Anik, Md. S. Hossain, Md. K. Hasan, M. S. Hossain, Biomass-derived carbon materials for sustainable energy applications: A comprehensive review, Sustain. Energy Fuels, 9 (2025) 693-723.. https://doi.org/10.1039/D4SE01393J
[17] S. Ling, D. L. Kaplan, M. J. Buehler, Nanofibrils in nature and materials engineering, Nat. Rev. Mater. 3 (2018) 18016.. https://doi.org/10.1038/natrevmats.2018.16
[18] F. H. Isikgo, C. R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals .and polymers, 6 (2015) 4497-4559.. https://doi.org/10.1039/C5PY00263J
[19] M. Bartoli, M. Troiano, P. Giudicianni, D. Amato, M. Giorcelli, R. Solimene, A. Tagliaferro, Effect of heating rate and feedstock nature on electrical conductivity of biochar and biochar-based composites, Appl. Energy Combust. Sci. 12 (2022) 100089.. https://doi.org/10.1016/j.jaecs.2022.100089
[20] B. Li, D. Liu, D. Lin, X. Xie, S. Wang, H. Xu, J. Wang, Y. Huang, S. Zhang, X. Hu, Changes in Biochar Functional Groups and Its Reactivity after Volatile-Char Interactions during Biomass Pyrolysis, Energy & Fuels, 34 (2020) 14291-14299.. https://doi.org/10.1021/acs.energyfuels.0c03243
[21] Y-L. Bai, C-C. Zhang, F. Rong, Z-X. Guo, K-X. Wang, Biomass-Derived Carbon Materials for Electrochemical Energy Storage, Chem. Eur. J. 30 (2024) e202304157.. https://doi.org/10.1002/chem.202304157
[22] K. M. Darkwa, S. Akromah, R. M. Gupta, Chapter 9 – Advanced applications of biomass for energy storage, A. M. Mishra, C. M. Hussain, (eds), In Micro and Nano Technologies, Bio-Based Nanomaterials, Elsevier, 2022, pp. 171-209,. https://doi.org/10.1016/B978-0-323-85148-0.00005-1
[23] W. Lu, Y. Si, C. Zhao, T. Chen, C. Li, C. Zhang, K. Wang, Biomass-derived carbon applications in the field of supercapacitors: Progress and prospects, Chem. Eng. J. 495 (2024) 153311.. https://doi.org/10.1016/j.cej.2024.153311
[24] C. Jin, J. Nai, O. Sheng, H. Yuan, W. Zhang, X. Tao, X. W. Lou, Biomass-based materials for green lithium secondary batteries, Energy Environ. Sci. 14 (2021) 1326-1379.. https://doi.org/10.1039/D0EE02848G
[25] A. Feng, X. Zhu, Y. Chen, P. Liu, F. Han, Y. Zu, X. Li, P. Bi, Functional Biomass-Derived Materials for the Development of Sustainable Batteries, ChemElectroChem, 13 (2024) e202400086.. https://doi.org/10.1002/celc.202400086
[26] A. Anwara, B. S. Mohammeda, M. A. Wahaba, M.S. Liew, Enhanced properties of cementitious composite tailored with graphene oxide nanomaterial – A review, Dev. Built Environ. 1 (2020) 100002.. https://doi.org/10.1016/j.dibe.2019.100002
[27] I. Sebbani, M. K. Ettouhami, M. Boulakhbar, Fuel cells: A technical, environmental, and economic outlook, Clean. Energy Syst. 10 (2025) 100168.. https://doi.org/10.1016/j.cles.2024.100168
[28] T. J. F. Day, U. W. Schmitt, G A. Voth, The Mechanism of Hydrated Proton Transport in Water, J. Am. Chem. Soc. 122 (2020) 12027-12028.. https://doi.org/10.1021/ja002506n
[29] J. Larmini, A. Dicks, Fuel Cell Systems Explained, Wiley, 2003, 2-s2.0-84949778632.X. https://doi.org/10.1002/9781118878330
[30] Ren, Y. Wang, A. Liu, Z. Zhang, Q. Lva, B. Liu, Current progress and performance improvement of Pt/C catalysts for fuel cells, J. Mater. Chem. A. 46 (2020) 24284-24306.. https://doi.org/10.1039/D0TA08312G


