Stability and Durability of Graphene-based Materials for Supercapacitor Applications: Challenges and Solutions
HARITHA Valiyaveettil, BINITHA N. Narayanan
Supercapacitors are vital for next-generation energy storage due to their high-power density, rapid charge-discharge capability, and long cycle life. Graphene-based electrodes are well-suited for supercapacitors due to their exceptional conductivity and large surface area. However, several challenges hinder long-term durability; pristine graphene restacks, thereby reducing ion accessibility, while reduced graphene oxide (rGO), though cost-effective, has structural defects, low surface area, and lower conductivity. High-quality graphene obtained by chemical vapor deposition offers high conductivity but is costly and lacks functionalities that aid nanocomposite formation which is necessary for improved performance. One solution to these issues lies in the edge functionalization of graphene via various mechanochemical graphite exfoliation methods, particularly ball milling, which introduces active sites without affecting the in-plane π-conjugation, retaining conductivity, and also preventing layer restacking. Structural modifications, such as heteroatom doping, porosity introduction, development of 3D architectures, nanocomposite formation, etc., enhance the energy density of high-power-density graphene-based electrodes. Additionally, integrating graphene with other conductive layered materials improves electrochemical activity and stability, delivering excellent supercapacitor performance. Together, these strategies improve the durability and stability of supercapacitors, paving the way for cost-effective, high-performance, and high-quality graphene-based energy storage systems. This chapter explores the advantages and current challenges associated with graphene-based supercapacitors while examining potential solutions to overcome the limitations.
Keywords
Graphene, Supercapacitor, Stability & Durability, Graphite Exfoliation, Edge-Functionalization
Published online 10/20/2025, 25 pages
Citation: HARITHA Valiyaveettil, BINITHA N. Narayanan, Stability and Durability of Graphene-based Materials for Supercapacitor Applications: Challenges and Solutions, Materials Research Foundations, Vol. 182, pp 135-159, 2025
DOI: https://doi.org/10.21741/9781644903797-10
Part of the book on Electrocatalysts and Advanced Materials for Sustainable Energy Storage
References
[1] P. Huo, P. Zhao, Y. Wang, B. Liu, G. Yin, M. Dong, A Roadmap for Achieving Sustainable Energy Conversion and Storage: Graphene-Based Composites Used Both as an Electrocatalyst for Oxygen Reduction Reactions and an Electrode Material for a Supercapacitor, Energies 11 (2018) 167. https://doi.org/10.3390/en11010167
[2] P. Lamba, P. Singh, P. Singh, P. Singh, Bharti, A. Kumar, M. Gupta, Y. Kumar, Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance, J. Energy Storage 48 (2022) 103871. https://doi.org/10.1016/j.est.2021.103871
[3] B. Muruganantham, R. Gnanadass, N.P. Padhy, Challenges with renewable energy sources and storage in practical distribution systems, Renew. Sustain. Energy Rev. 73 (2017) 125–134. https://doi.org/10.1016/j.rser.2017.01.089
[4] J. Yan, Q. Wang, T. Wei, Z. Fan, Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities, Adv. Energy Mater. 4 (2014) 1300816. https://doi.org/10.1002/aenm.201300816
[5] J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, Supercapacitors: Properties and applications, J. Energy Storage 17 (2018) 224–227. https://doi.org/10.1016/j.est.2018.03.012
[6] O.S. Adedoja, E.R. Sadiku, Y. Hamam, An Overview of the Emerging Technologies and Composite Materials for Supercapacitors in Energy Storage Applications, Polymers 15 (2023) 2272. https://doi.org/10.3390/polym15102272
[7] A. Shuja, H.R. Khan, I. Murtaza, S. Ashraf, Y. Abid, F. Farid, F. Sajid, Supercapacitors for energy storage applications: Materials, devices and future directions: A comprehensive review, J. Alloys Compd. 1009 (2024) 176924. https://doi.org/10.1016/j.jallcom.2024.176924
[8] C.V.V. Muralee Gopi, S. Alzahmi, V. Narayanaswamy, R. Vinodh, B. Issa, I.M. Obaidat, Supercapacitors: A promising solution for sustainable energy storage and diverse applications, J. Energy Storage 114 (2025) 115729. https://doi.org/10.1016/j.est.2025.115729
[9] S.K. Tiwari, A.K. Thakur, A.D. Adhikari, Y. Zhu, N. Wang, Current Research of Graphene-Based Nanocomposites and Their Application for Supercapacitors, Nanomaterials 10 (2020) 2046. https://doi.org/10.3390/nano10102046
[10] Q. Wu, T. He, Y. Zhang, J. Zhang, Z. Wang, Y. Liu, L. Zhao, Y. Wu, F. Ran, Cyclic stability of supercapacitors: materials, energy storage mechanism, test methods, and device, J. Mater. Chem. A 9 (2021) 24094–24147. https://doi.org/10.1039/D1TA06815F
[11] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem Soc Rev 41 (2012) 797–828. https://doi.org/10.1039/C1CS15060J
[12] R.T. Yadlapalli, R.R. Alla, R. Kandipati, A. Kotapati, Super capacitors for energy storage: Progress, applications and challenges, J. Energy Storage 49 (2022) 104194. https://doi.org/10.1016/j.est.2022.104194
[13] Y.B. Tan, J.-M. Lee, Graphene for supercapacitor applications, J. Mater. Chem. A 1 (2013) 14814. https://doi.org/10.1039/c3ta12193c
[14] H. Rashid Khan, A. Latif Ahmad, Supercapacitors: Overcoming current limitations and charting the course for next-generation energy storage, J. Ind. Eng. Chem. 141 (2025) 46–66. https://doi.org/10.1016/j.jiec.2024.07.014
[15] P. Forouzandeh, V. Kumaravel, S.C. Pillai, Electrode Materials for Supercapacitors: A Review of Recent Advances, Catalysts 10 (2020) 969. https://doi.org/10.3390/catal10090969
[16] W. Lv, Z. Li, Y. Deng, Q.-H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges, Energy Storage Mater. 2 (2016) 107–138. https://doi.org/10.1016/j.ensm.2015.10.002
[17] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A 5 (2017) 12653–12672. https://doi.org/10.1039/C7TA00863E
[18] A. Patel, S.K. Patel, R.S. Singh, R.P. Patel, Review on recent advancements in the role of electrolytes and electrode materials on supercapacitor performances, Discov. Nano 19 (2024) 188. https://doi.org/10.1186/s11671-024-04053-1
[19] A. Abdisattar, M. Yeleuov, C. Daulbayev, K. Askaruly, A. Tolynbekov, A. Taurbekov, N. Prikhodko, Recent advances and challenges of current collectors for supercapacitors, Electrochem. Commun. 142 (2022) 107373. https://doi.org/10.1016/j.elecom.2022.107373
[20] T. Bagarti, A.M. Jayannavar, Storage of Electrical Energy, Resonance 25 (2020) 963–980. https://doi.org/10.1007/s12045-020-1012-0
[21] S.W. Bokhari, A.H. Siddique, P.C. Sherrell, X. Yue, K.M. Karumbaiah, S. Wei, A.V. Ellis, W. Gao, Advances in graphene-based supercapacitor electrodes, Energy Rep. 6 (2020) 2768–2784. https://doi.org/10.1016/j.egyr.2020.10.001
[22] M. Horn, B. Gupta, J. MacLeod, J. Liu, N. Motta, Graphene-based supercapacitor electrodes: Addressing challenges in mechanisms and materials, Curr. Opin. Green Sustain. Chem. 17 (2019) 42–48. https://doi.org/10.1016/j.cogsc.2019.03.004
[23] H.H. Hegazy, J. Khan, N. Shakeel, E.A. Alabdullkarem, M.I. Saleem, H. Alrobei, I.S. Yahia, 2D-based electrode materials for supercapacitors – status, challenges, and prospects, RSC Adv. 14 (2024) 32958–32977. https://doi.org/10.1039/D4RA05473C
[24] Z. Yan, S. Luo, Q. Li, Z.-S. Wu, S. (Frank) Liu, Recent Advances in Flexible Wearable Supercapacitors: Properties, Fabrication, and Applications, Adv. Sci. 11 (2024) 2302172. https://doi.org/10.1002/advs.202302172
[25] J.O. Dennis, M.F. Shukur, O.A. Aldaghri, K.H. Ibnaouf, A.A. Adam, F. Usman, Y.M. Hassan, A. Alsadig, W.L. Danbature, B.A. Abdulkadir, A Review of Current Trends on Polyvinyl Alcohol (PVA)-Based Solid Polymer Electrolytes, Molecules 28 (2023) 1781. https://doi.org/10.3390/molecules28041781
[26] Y. Zhang, H. Mei, Y. Cao, X. Yan, J. Yan, H. Gao, H. Luo, S. Wang, X. Jia, L. Kachalova, J. Yang, S. Xue, C. Zhou, L. Wang, Y. Gui, Recent advances and challenges of electrode materials for flexible supercapacitors, Coord. Chem. Rev. 438 (2021) 213910. https://doi.org/10.1016/j.ccr.2021.213910
[27] M.R. Benzigar, V.D.B.C. Dasireddy, X. Guan, T. Wu, G. Liu, Advances on Emerging Materials for Flexible Supercapacitors: Current Trends and Beyond, Adv. Funct. Mater. 30 (2020) 2002993. https://doi.org/10.1002/adfm.202002993
[28] Flexible supercapacitors based on vertical graphene/carbon fabric with high rate performance, Appl. Surf. Sci. 610 (2023) 155535. https://doi.org/10.1016/j.apsusc.2022.155535
[29] T. Chen, L. Dai, Flexible supercapacitors based on carbon nanomaterials, J. Mater. Chem. A 2 (2014) 10756–10775. https://doi.org/10.1039/C4TA00567H
[30] A. Mishra, N.P. Shetti, S. Basu, K. Raghava Reddy, T.M. Aminabhavi, Carbon Cloth-based Hybrid Materials as Flexible Electrochemical Supercapacitors, ChemElectroChem 6 (2019) 5771–5786. https://doi.org/10.1002/celc.201901122
[31] M. Shaker, A.A. Sadeghi Ghazvini, S. Feng, W. Cao, X. Meng, Q. Ge, R. Riahifar, Improving the Electrochemical Performance of Pouch Cell Electric Double-Layer Capacitors by Integrating Graphene Nanoplates into Activated Carbon, Energy Technol. 10 (2022) 2100735. https://doi.org/10.1002/ente.202100735
[32] X. Zhao, B. Zheng, T. Huang, C. Gao, Graphene-based single fiber supercapacitor with a coaxial structure, Nanoscale 7 (2015) 9399–9404. https://doi.org/10.1039/C5NR01737H
[33] T.B. Naveen, D. Durgalakshmi, A.K. Kunhiraman, S. Balakumar, R. Ajay Rakkesh, Recent advances in graphene-based micro-supercapacitors: Processes and applications, J. Mater. Res. 36 (2021) 4102–4119. https://doi.org/10.1557/s43578-021-00366-4
[34] M.Z. Iqbal, M.M. Faisal, S.R. Ali, Integration of supercapacitors and batteries towards high-performance hybrid energy storage devices, Int. J. Energy Res. 45 (2021) 1449–1479. https://doi.org/10.1002/er.5954
[35] M. Czagany, S. Hompoth, A.K. Keshri, N. Pandit, I. Galambos, Z. Gacsi, P. Baumli, Supercapacitors: An Efficient Way for Energy Storage Application, Materials 17 (2024) 702. https://doi.org/10.3390/ma17030702
[36] M.Z. Iqbal, U. Aziz, Supercapattery: Merging of battery-supercapacitor electrodes for hybrid energy storage devices, J. Energy Storage 46 (2022) 103823. https://doi.org/10.1016/j.est.2021.103823
[37] A. Patra, N. K, J. Rose Jose, S. Sahoo, B. Chakraborty, C. Sekhar Rout, Understanding the charge storage mechanism of supercapacitors: in situ / operando spectroscopic approaches and theoretical investigations, J. Mater. Chem. A 9 (2021) 25852–25891. https://doi.org/10.1039/D1TA07401F
[38] Yu.M. Volfkovich, Electrochemical Supercapacitors (a Review), Russ. J. Electrochem. 57 (2021) 311–347. https://doi.org/10.1134/S1023193521040108
[39] S. Karthikeyan, B. Narenthiran, A. Sivanantham, L.D. Bhatlu, T. Maridurai, Supercapacitor: Evolution and review, Mater. Today Proc. 46 (2021) 3984–3988. https://doi.org/10.1016/j.matpr.2021.02.526
[40] A.G. Olabi, Q. Abbas, A. Al Makky, M.A. Abdelkareem, Supercapacitors as next generation energy storage devices: Properties and applications, Energy 248 (2022) 123617. https://doi.org/10.1016/j.energy.2022.123617
[41] Y. Lu, S. Zhang, J. Yin, C. Bai, J. Zhang, Y. Li, Y. Yang, Z. Ge, M. Zhang, L. Wei, M. Ma, Y. Ma, Y. Chen, Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors, Carbon 124 (2017) 64–71. https://doi.org/10.1016/j.carbon.2017.08.044
[42] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 157 (2006) 11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065
[43] N. Kumar, S.-B. Kim, S.-Y. Lee, S.-J. Park, Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives, Nanomaterials 12 (2022) 3708. https://doi.org/10.3390/nano12203708
[44] N.I. Jalal, R.I. Ibrahim, M.K. Oudah, A review on Supercapacitors: types and components, J. Phys. Conf. Ser. 1973 (2021) 012015. https://doi.org/10.1088/1742-6596/1973/1/012015
[45] D.S. Silvester, R. Jamil, S. Doblinger, Y. Zhang, R. Atkin, H. Li, Electrical Double Layer Structure in Ionic Liquids and Its Importance for Supercapacitor, Battery, Sensing, and Lubrication Applications, J. Phys. Chem. C 125 (2021) 13707–13720. https://doi.org/10.1021/acs.jpcc.1c03253
[46] P. Sharma, T.S. Bhatti, A review on electrochemical double-layer capacitors, Energy Convers. Manag. 51 (2010) 2901–2912. https://doi.org/10.1016/j.enconman.2010.06.031
[47] K.-C. Tsay, L. Zhang, J. Zhang, Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor, Electrochimica Acta 60 (2012) 428–436. https://doi.org/10.1016/j.electacta.2011.11.087
[48] Bharti, A. Kumar, G. Ahmed, M. Gupta, P. Bocchetta, R. Adalati, R. Chandra, Y. Kumar, Theories and models of supercapacitors with recent advancements: impact and interpretations, Nano Express 2 (2021) 022004. https://doi.org/10.1088/2632-959X/abf8c2
[49] L. Pilon, H. Wang, A. d’Entremont, Recent Advances in Continuum Modeling of Interfacial and Transport Phenomena in Electric Double Layer Capacitors, J. Electrochem. Soc. 162 (2015) A5158. https://doi.org/10.1149/2.0211505jes
[50] M.-S. Wu, K.-H. Lin, One-step Electrophoretic Deposition of Ni-Decorated Activated-Carbon Film as an Electrode Material for Supercapacitors, J. Phys. Chem. C 114 (2010) 6190–6196. https://doi.org/10.1021/jp9109145
[51] E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys. 9 (2007) 1774–1785. https://doi.org/10.1039/B618139M
[52] C. Li, X. Zhang, K. Wang, X. Sun, G. Liu, J. Li, H. Tian, J. Li, Y. Ma, Scalable Self-Propagating High-Temperature Synthesis of Graphene for Supercapacitors with Superior Power Density and Cyclic Stability, Adv. Mater. 29 (2017) 1604690. https://doi.org/10.1002/adma.201604690
[53] M. Girirajan, A.K. Bojarajan, I.N. Pulidindi, K.N. Hui, S. Sangaraju, An insight into the nanoarchitecture of electrode materials on the performance of supercapacitors, Coord. Chem. Rev. 518 (2024) 216080. https://doi.org/10.1016/j.ccr.2024.216080
[54] C. S, M.A.A. Mohd Abdah, V.N. Thakur, M.S. Govinde Gowda, P. Choudhary, J.B. Sriramoju, D. Rangappa, S. Malik, S. Rustagi, M. Khalid, Progress and Prospects of MXene-Based Hybrid Composites for Next-Generation Energy Technology, J. Electrochem. Soc. 170 (2023) 120530. https://doi.org/10.1149/1945-7111/ad0c64
[55] Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, S. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review, J. Mater. Sci. 56 (2021) 173–200. https://doi.org/10.1007/s10853-020-05157-6
[56] S. Sahoo, R. Kumar, E. Joanni, R.K. Singh, J.-J. Shim, Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors, J. Mater. Chem. A 10 (2022) 13190–13240. https://doi.org/10.1039/D2TA02357A
[57] X. Zhu, Recent advances of transition metal oxides and chalcogenides in pseudocapacitors and hybrid capacitors: A review of structures, synthetic strategies, and mechanism studies, J. Energy Storage 49 (2022) 104148. https://doi.org/10.1016/j.est.2022.104148
[58] P. Bhojane, Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding, J. Energy Storage 45 (2022) 103654. https://doi.org/10.1016/j.est.2021.103654
[59] S. Mahala, K. Khosravinia, A. Kiani, Unwanted degradation in pseudocapacitors: Challenges and opportunities, J. Energy Storage 67 (2023) 107558. https://doi.org/10.1016/j.est.2023.107558
[60] T. Schoetz, L.W. Gordon, S. Ivanov, A. Bund, D. Mandler, R.J. Messinger, Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems, Electrochimica Acta 412 (2022) 140072. https://doi.org/10.1016/j.electacta.2022.140072
[61] S.J. Panchu, K. Raju, H.C. Swart, Emerging Two–Dimensional Intercalation Pseudocapacitive Electrodes for Supercapacitors, ChemElectroChem 11 (2024) e202300810. https://doi.org/10.1002/celc.202300810
[62] H.W. Park, K.C. Roh, Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors–A review, J. Power Sources 557 (2023) 232558. https://doi.org/10.1016/j.jpowsour.2022.232558
[63] W.H. Low, P.S. Khiew, S.S. Lim, C.W. Siong, E.R. Ezeigwe, Recent development of mixed transition metal oxide and graphene/mixed transition metal oxide based hybrid nanostructures for advanced supercapacitors, J. Alloys Compd. 775 (2019) 1324–1356. https://doi.org/10.1016/j.jallcom.2018.10.102
[64] P. Navalpotro, M. Anderson, R. Marcilla, J. Palma, Insights into the energy storage mechanism of hybrid supercapacitors with redox electrolytes by Electrochemical Impedance Spectroscopy, Electrochimica Acta 263 (2018) 110–117. https://doi.org/10.1016/j.electacta.2017.12.167
[65] D. P. Chatterjee, A. K. Nandi, A review on the recent advances in hybrid supercapacitors, J. Mater. Chem. A 9 (2021) 15880–15918. https://doi.org/10.1039/D1TA02505H
[66] A. Afif, S.M. Rahman, A. Tasfiah Azad, J. Zaini, M.A. Islan, A.K. Azad, Advanced materials and technologies for hybrid supercapacitors for energy storage – A review, J. Energy Storage 25 (2019) 100852. https://doi.org/10.1016/j.est.2019.100852
[67] A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renew. Sustain. Energy Rev. 101 (2019) 123–145. https://doi.org/10.1016/j.rser.2018.10.026
[68] Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and Mechanisms of Asymmetric Supercapacitors, Chem. Rev. 118 (2018) 9233–9280. https://doi.org/10.1021/acs.chemrev.8b00252
[69] Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes – A review, J. Materiomics 2 (2016) 37–54. https://doi.org/10.1016/j.jmat.2016.01.001
[70] L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem. 20 (2010) 5983. https://doi.org/10.1039/c000417k
[71] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109–162. https://doi.org/10.1103/RevModPhys.81.109
[72] S.K. Kandasamy, K. Kandasamy, Recent Advances in Electrochemical Performances of Graphene Composite (Graphene-Polyaniline/Polypyrrole/Activated Carbon/Carbon Nanotube) Electrode Materials for Supercapacitor: A Review, J. Inorg. Organomet. Polym. Mater. 28 (2018) 559–584. https://doi.org/10.1007/s10904-018-0779-x
[73] N. Mahmood, C. Zhang, H. Yin, Y. Hou, Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells, J Mater Chem A 2 (2014) 15–32. https://doi.org/10.1039/C3TA13033A
[74] K.E. Whitener, P.E. Sheehan, Graphene synthesis, Diam. Relat. Mater. 46 (2014) 25–34. https://doi.org/10.1016/j.diamond.2014.04.006
[75] A. Armano, S. Agnello, Two-Dimensional Carbon: A Review of Synthesis Methods, and Electronic, Optical, and Vibrational Properties of Single-Layer Graphene, C 5 (2019) 67. https://doi.org/10.3390/c5040067
[76] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Production and processing of graphene and 2D crystals, Mater. Today 15 (2012) 564–589. https://doi.org/10.1016/S1369-7021(13)70014-2
[77] K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts, J. Am. Chem. Soc. 136 (2014) 6083–6091. https://doi.org/10.1021/ja5017156
[78] H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method, Sci. Rep. 6 (2016) 36143. https://doi.org/10.1038/srep36143
[79] W. Wang, Y. Hou, D. Martinez, D. Kurniawan, W.-H. Chiang, P. Bartolo, Carbon Nanomaterials for Electro-Active Structures: A Review, Polymers 12 (2020) 2946. https://doi.org/10.3390/polym12122946
[80] M.G. Sumdani, M.R. Islam, A.N.A. Yahaya, S.I. Safie, Recent advances of the graphite exfoliation processes and structural modification of graphene: a review, J. Nanoparticle Res. 23 (2021) 253. https://doi.org/10.1007/s11051-021-05371-6
[81] R. Ye, J.M. Tour, Graphene at Fifteen, ACS Nano 13 (2019) 10872–10878. https://doi.org/10.1021/acsnano.9b06778
[82] R. C. Sinclair, J. L. Suter, P. V. Coveney, Micromechanical exfoliation of graphene on the atomistic scale, Phys. Chem. Chem. Phys. 21 (2019) 5716–5722. https://doi.org/10.1039/C8CP07796G
[83] M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A 3 (2015) 11700–11715. https://doi.org/10.1039/C5TA00252D
[84] B. Jayasena, S. Subbiah, A novel mechanical cleavage method for synthesizing few-layer graphenes, Nanoscale Res. Lett. 6 (2011) 95. https://doi.org/10.1186/1556-276X-6-95
[85] A.F. Betancur, N. Ornelas-Soto, A.M. Garay-Tapia, F.R. Pérez, Á. Salazar, A.G. García, A general strategy for direct synthesis of reduced graphene oxide by chemical exfoliation of graphite, Mater. Chem. Phys. 218 (2018) 51–61. https://doi.org/10.1016/j.matchemphys.2018.07.019
[86] N. Cao, Y. Zhang, Study of Reduced Graphene Oxide Preparation by Hummers’ Method and Related Characterization, J. Nanomater. 2015 (2015) 168125. https://doi.org/10.1155/2015/168125
[87] J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon 64 (2013) 225–229. https://doi.org/10.1016/j.carbon.2013.07.055
[88] J. Chen, Y. Li, L. Huang, C. Li, G. Shi, High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process, Carbon 81 (2015) 826–834. https://doi.org/10.1016/j.carbon.2014.10.033
[89] S. Balasubramanyan, S. Sasidharan, R. Poovathinthodiyil, R. M. Ramakrishnan, B. N. Narayanan, Sucrose-mediated mechanical exfoliation of graphite: a green method for the large scale production of graphene and its application in catalytic reduction of 4-nitrophenol, New J. Chem. 41 (2017) 11969–11978. https://doi.org/10.1039/C7NJ01900A
[90] P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong, Electrochemical exfoliation of graphite and production of functional graphene, Curr. Opin. Colloid Interface Sci. 20 (2015) 329–338. https://doi.org/10.1016/j.cocis.2015.10.007
[91] F. Liu, C. Wang, X. Sui, M.A. Riaz, M. Xu, L. Wei, Y. Chen, Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential, Carbon Energy 1 (2019) 173–199. https://doi.org/10.1002/cey2.14
[92] A. M. Abdelkader, A. J. Cooper, R.A. W. Dryfe, I. A. Kinloch, How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite, Nanoscale 7 (2015) 6944–6956. https://doi.org/10.1039/C4NR06942K
[93] W. Du, X. Jiang, L. Zhu, From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene, J. Mater. Chem. A 1 (2013) 10592. https://doi.org/10.1039/c3ta12212c
[94] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol. 3 (2008) 563–568. https://doi.org/10.1038/nnano.2008.215
[95] A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation, Chem. Soc. Rev. 43 (2014) 381–398. https://doi.org/10.1039/C3CS60217F
[96] Y. Xu, H. Cao, Y. Xue, B. Li, W. Cai, Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges, Nanomaterials 8 (2018) 942. https://doi.org/10.3390/nano8110942
[97] D. Parviz, F. Irin, S.A. Shah, S. Das, C.B. Sweeney, M.J. Green, Challenges in Liquid-Phase Exfoliation, Processing, and Assembly of Pristine Graphene, Adv. Mater. 28 (2016) 8796–8818. https://doi.org/10.1002/adma.201601889
[98] Chandni. A p, S. Vattapparambil Chandran, B.N. Narayanan, An environmentally sustainable ultrasonic-assisted exfoliation approach to graphene and its nanocompositing with polyaniline for supercapacitor applications, Ultrasonics 145 (2025) 107482. https://doi.org/10.1016/j.ultras.2024.107482
[99] Md.S.A. Bhuyan, Md.N. Uddin, Md.M. Islam, F.A. Bipasha, S.S. Hossain, Synthesis of graphene, Int. Nano Lett. 6 (2016) 65–83. https://doi.org/10.1007/s40089-015-0176-1
[100] K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method, J. Phys. Chem. C 113 (2009) 4257–4259. https://doi.org/10.1021/jp900791y
[101] Y. Zhang, L. Zhang, C. Zhou, Review of Chemical Vapor Deposition of Graphene and Related Applications, Acc. Chem. Res. 46 (2013) 2329–2339. https://doi.org/10.1021/ar300203n
[102] X.Z. Yu, C.G. Hwang, C.M. Jozwiak, A. Köhl, A.K. Schmid, A. Lanzara, New synthesis method for the growth of epitaxial graphene, J. Electron Spectrosc. Relat. Phenom. 184 (2011) 100–106. https://doi.org/10.1016/j.elspec.2010.12.034
[103] H.-F. Yen, Y.-Y. Horng, M.-S. Hu, W.-H. Yang, J.-R. Wen, A. Ganguly, Y. Tai, K.-H. Chen, L.-C. Chen, Vertically aligned epitaxial graphene nanowalls with dominated nitrogen doping for superior supercapacitors, Carbon 82 (2015) 124–134. https://doi.org/10.1016/j.carbon.2014.10.042
[104] X. Fan, D.W. Chang, X. Chen, J.-B. Baek, L. Dai, Functionalized graphene nanoplatelets from ball milling for energy applications, Curr. Opin. Chem. Eng. 11 (2016) 52–58. https://doi.org/10.1016/j.coche.2016.01.003
[105] S.S. Shams, R. Zhang, J. Zhu, Graphene synthesis: a Review, Mater. Sci.-Pol. 33 (2015) 566–578. https://doi.org/10.1515/msp-2015-0079
[106] W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, Preparation of graphene by exfoliation of graphite using wet ball milling, J. Mater. Chem. 20 (2010) 5817–5819. https://doi.org/10.1039/C0JM01354D
[107] A.E.D. Mahmoud, A. Stolle, M. Stelter, Sustainable Synthesis of High-Surface-Area Graphite Oxide via Dry Ball Milling, ACS Sustain. Chem. Eng. 6 (2018) 6358–6369. https://doi.org/10.1021/acssuschemeng.8b00147
[108] R. Lakra, R. Kumar, P.K. Sahoo, D. Thatoi, A. Soam, A mini-review: Graphene based composites for supercapacitor application, Inorg. Chem. Commun. 133 (2021) 108929. https://doi.org/10.1016/j.inoche.2021.108929
[109] D. Nandi, V.B. Mohan, A.K. Bhowmick, D. Bhattacharyya, Metal/metal oxide decorated graphene synthesis and application as supercapacitor: a review, J. Mater. Sci. 55 (2020) 6375–6400. https://doi.org/10.1007/s10853-020-04475-z
[110] F. Ahmad, M. Zahid, H. Jamil, M.A. Khan, S. Atiq, M. Bibi, K. Shahbaz, M. Adnan, M. Danish, F. Rasheed, H. Tahseen, M.J. Shabbir, M. Bilal, A. Samreen, Advances in graphene-based electrode materials for high-performance supercapacitors: A review, J. Energy Storage 72 (2023) 108731. https://doi.org/10.1016/j.est.2023.108731
[111] X. Sun, C. Huang, L. Wang, L. Liang, Y. Cheng, W. Fei, Y. Li, Recent Progress in Graphene/Polymer Nanocomposites, Adv. Mater. 33 (2021) 2001105. https://doi.org/10.1002/adma.202001105
[112] D.K. Singha, R.I. Mohanty, P. Bhanja, B.K. Jena, Metal–organic framework and graphene composites: advanced materials for electrochemical supercapacitor applications, Mater. Adv. 4 (2023) 4679–4706. https://doi.org/10.1039/D3MA00523B
[113] L.G. Beka, X. Bu, X. Li, X. Wang, C. Han, W. Liu, A 2D metal–organic framework/reduced graphene oxide heterostructure for supercapacitor application, RSC Adv. 9 (2019) 36123–36135. https://doi.org/10.1039/C9RA07061C
[114] P. Srimuk, S. Luanwuthi, A. Krittayavathananon, M. Sawangphruk, Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper, Electrochimica Acta 157 (2015) 69–77. https://doi.org/10.1016/j.electacta.2015.01.082
[115] J. Ran, Y. Liu, H. Feng, H. Shi, Q. Ma, A review on graphene-based electrode materials for supercapacitor, J. Ind. Eng. Chem. 137 (2024) 106–121. https://doi.org/10.1016/j.jiec.2024.03.043
[116] P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue, H. Pang, Transition Metal Sulfides Based on Graphene for Electrochemical Energy Storage, Adv. Energy Mater. 8 (2018) 1703259. https://doi.org/10.1002/aenm.201703259
[117] F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu, L. Fu, Y. Chen, H. Wang, Y. Wu, W. Li, Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors, J. Mater. Chem. A 6 (2018) 5856–5861. https://doi.org/10.1039/C8TA00835C
[118] H. Zhang, D. Yang, A. Lau, T. Ma, H. Lin, B. Jia, Hybridized Graphene for Supercapacitors: Beyond the Limitation of Pure Graphene, Small 17 (2021) 2007311. https://doi.org/10.1002/smll.202007311
[119] J. Huang, J. Wang, C. Wang, H. Zhang, C. Lu, J. Wang, Hierarchical Porous Graphene Carbon-Based Supercapacitors, Chem. Mater. 27 (2015) 2107–2113. https://doi.org/10.1021/cm504618r
[120] A.R. Sonkawade, S.S. Mahajan, A.R. Shelake, S.A. Ahir, M.R. Waikar, S.S. Sutar, R.G. Sonkawade, T.D. Dongale, The g-C3N4/rGO composite for high-performance supercapacitor: Synthesis, characterizations, and time series modeling and predictions, Int. J. Hydrog. Energy 87 (2024) 1416–1426. https://doi.org/10.1016/j.ijhydene.2024.09.129
[121] S. Zheng, Z.-S. Wu, S. Wang, H. Xiao, F. Zhou, C. Sun, X. Bao, H.-M. Cheng, Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors, Energy Storage Mater. 6 (2017) 70–97. https://doi.org/10.1016/j.ensm.2016.10.003
[122] R.R. Salunkhe, Y.-H. Lee, K.-H. Chang, J.-M. Li, P. Simon, J. Tang, N.L. Torad, C.-C. Hu, Y. Yamauchi, Nanoarchitectured Graphene-Based Supercapacitors for Next-Generation Energy-Storage Applications, Chem. – Eur. J. 20 (2014) 13838–13852. https://doi.org/10.1002/chem.201403649
[123] X. Shi, S. Zheng, Z.-S. Wu, X. Bao, Recent advances of graphene-based materials for high-performance and new-concept supercapacitors, J. Energy Chem. 27 (2018) 25–42. https://doi.org/10.1016/j.jechem.2017.09.034
[124] S. Rao, J. Upadhyay, K. Polychronopoulou, R. Umer, R. Das, Reduced Graphene Oxide: Effect of Reduction on Electrical Conductivity, J. Compos. Sci. 2 (2018) 25. https://doi.org/10.3390/jcs2020025
[125] W. Li, W. Yang, M. Wu, M. Zhao, X. Lu, Polydopamine-coated graphene for supercapacitors with improved electrochemical performances and reduced self-discharge, Electrochimica Acta 426 (2022) 140776. https://doi.org/10.1016/j.electacta.2022.140776
[126] R. Yuan, Y. Dong, R. Hou, S. Zhang, H. Song, Review—Influencing Factors and Suppressing Strategies of the Self-Discharge for Carbon Electrode Materials in Supercapacitors, J. Electrochem. Soc. 169 (2022) 030504. https://doi.org/10.1149/1945-7111/ac56a1
[127] O. Okhay, A. Tkach, P. Staiti, F. Lufrano, Long term durability of solid-state supercapacitor based on reduced graphene oxide aerogel and carbon nanotubes composite electrodes, Electrochimica Acta 353 (2020) 136540. https://doi.org/10.1016/j.electacta.2020.136540
[128] A.W. Anwar, A. Majeed, N. Iqbal, W. Ullah, A. Shuaib, U. Ilyas, F. Bibi, H.M. Rafique, Specific Capacitance and Cyclic Stability of Graphene Based Metal/Metal Oxide Nanocomposites: A Review, J. Mater. Sci. Technol. 31 (2015) 699–707. https://doi.org/10.1016/j.jmst.2014.12.012
[129] S.-K. Kim, H.J. Kim, J.-C. Lee, P.V. Braun, H.S. Park, Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures, ACS Nano 9 (2015) 8569–8577. https://doi.org/10.1021/acsnano.5b03732
[130] Z. Yang, S. Chabi, Y. Xia, Y. Zhu, Preparation of 3D graphene-based architectures and their applications in supercapacitors, Prog. Nat. Sci. Mater. Int. 25 (2015) 554–562. https://doi.org/10.1016/j.pnsc.2015.11.010
[131] X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Preparation of Novel 3D Graphene Networks for Supercapacitor Applications, Small 7 (2011) 3163–3168. https://doi.org/10.1002/smll.201100990
[132] H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Advanced asymmetrical supercapacitors based on graphene hybrid materials, Nano Res. 4 (2011) 729–736. https://doi.org/10.1007/s12274-011-0129-6

