Electrocatalysts towards Sustainable Energy Storage Applications
ARUN Varghese, Kalathiparambil Rajendra Pai SUNAJADEVI, SONY J. Chundattu
Effective storage solutions are required as the world moves toward sustainable energy to handle the sporadic nature of renewable energy sources like solar and wind. An essential component of this effort is electrocatalysts, which can speed up important electrochemical reactions to improve the efficiency of energy storage devices like fuel cells, batteries, and supercapacitors. By exploring the basic ideas of electrocatalysis, this introductory chapter clarifies how these materials support energy conversion processes. It offers a thorough analysis of different electrocatalytic materials, including metal-organic frameworks, carbon-based compounds, and catalysts based on transition metals, going into their special qualities and uses in energy storage systems. Along with discussing current issues, including cost-effectiveness, scalability, and stability, the chapter also identifies new developments and potential avenues for electrocatalyst research. This introduction seeks to provide readers with a thorough grasp of the vital role electrocatalysts play in developing sustainable energy storage systems, laying the groundwork for the next chapters.
Keywords
Sustainability, Energy Storage, Electrocatalysts, Supercapacitors
Published online 10/20/2025, 11 pages
Citation: ARUN Varghese, Kalathiparambil Rajendra Pai SUNAJADEVI, SONY J. Chundattu, Electrocatalysts towards Sustainable Energy Storage Applications, Materials Research Foundations, Vol. 182, pp 1-11, 2025
DOI: https://doi.org/10.21741/9781644903797-1
Part of the book on Electrocatalysts and Advanced Materials for Sustainable Energy Storage
References
[1] P. Katila, C.J. Pierce Colfer, W. de Jong, G. Galloway, P. Pacheco, G. Winkel, eds., Sustainable Development Goals: Their Impacts on Forests and People, Cambridge University Press, 2019. https://doi.org/10.1017/9781108765015
[2] L. Wang, Y. Zhang, L. Chen, H. Xu, Y. Xiong, 2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting, Adv. Mater. 30 (2018) 1–12. https://doi.org/10.1002/adma.201801955
[3] A. Varghese, S. Devi K R, Tailoring a Multifunctional PEDOT/Co 3 O 4 ‐CeO 2 Composite for Sustainable Energy Applications, Adv. Sustain. Syst. 2300575 (2024) 1–11. https://doi.org/10.1002/adsu.202300575
[4] R.B. Swain, A Critical Analysis of the Sustainable Development Goals, in: 2018: pp. 341–355. https://doi.org/10.1007/978-3-319-63007-6_20
[5] T. Hák, S. Janoušková, B. Moldan, Sustainable Development Goals: A need for relevant indicators, Ecol. Indic. 60 (2016) 565–573. https://doi.org/10.1016/j.ecolind.2015.08.003
[6] W. Schramade, Investing in the UN Sustainable Development Goals: Opportunities for Companies and Investors, J. Appl. Corp. Financ. 29 (2017) 87–99. https://doi.org/10.1111/jacf.12236
[7] F.-Y. Chen, Z.-Y. Wu, Z. Adler, H. Wang, Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design, Joule. 5 (2021) 1704–1731. https://doi.org/10.1016/j.joule.2021.05.005
[8] F.R. Rangel-Olivares, E.M. Arce-Estrada, R. Cabrera-Sierra, Synthesis and Characterization of Polyaniline-Based Polymer Nanocomposites as Anti-Corrosion Coatings, Coatings. 11 (2021) 653. https://doi.org/10.3390/coatings11060653
[9] J. Xu, K. Wang, S. Zu, B. Han, Z. Wei, Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage, ACS Nano. 4 (2010) 5019–5026. https://doi.org/10.1021/nn1006539
[10] R. Anand, A.S. Nissimagoudar, M. Umer, M. Ha, M. Zafari, S. Umer, G. Lee, K.S. Kim, Late Transition Metal Doped MXenes Showing Superb Bifunctional Electrocatalytic Activities for Water Splitting via Distinctive Mechanistic Pathways, Adv. Energy Mater. 11 (2021). https://doi.org/10.1002/aenm.202102388
[11] R. Djara, M.-A. Lacour, A. Merzouki, J. Cambedouzou, D. Cornu, S. Tingry, Y. Holade, Iridium and Ruthenium Modified Polyaniline Polymer Leads to Nanostructured Electrocatalysts with High Performance Regarding Water Splitting, Polymers (Basel). 13 (2021) 190. https://doi.org/10.3390/polym13020190
[12] J. Zhang, R. Huang, Z. Dong, H. Lin, S. Han, An illumination-assisted supercapacitor of rice-like CuO nanosheet coated flexible carbon fiber, Electrochim. Acta. (2022) 140789. https://doi.org/10.1016/j.electacta.2022.140789
[13] T. Jayaraman, A.P. Murthy, V. Elakkiya, S. Chandrasekaran, P. Nithyadharseni, Z. Khan, R.A. Senthil, R. Shanker, M. Raghavender, P. Kuppusami, M. Jagannathan, M. Ashokkumar, Recent development on carbon based heterostructures for their applications in energy and environment: A review, J. Ind. Eng. Chem. 64 (2018) 16–59. https://doi.org/10.1016/j.jiec.2018.02.029
[14] A.G. Olabi, M.A. Abdelkareem, T. Wilberforce, E.T. Sayed, Application of graphene in energy storage device – A review, Renew. Sustain. Energy Rev. 135 (2021) 110026. https://doi.org/10.1016/j.rser.2020.110026
[15] R. Djara, Y. Holade, A. Merzouki, N. Masquelez, D. Cot, B. Rebiere, E. Petit, P. Huguet, C. Canaff, S. Morisset, T.W. Napporn, D. Cornu, S. Tingry, Insights from the Physicochemical and Electrochemical Screening of the Potentiality of the Chemically Synthesized Polyaniline, J. Electrochem. Soc. 167 (2020) 066503. https://doi.org/10.1149/1945-7111/ab7d40
[16] C. Spöri, J.T.H. Kwan, A. Bonakdarpour, D.P. Wilkinson, P. Strasser, The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation, Angew. Chemie – Int. Ed. 56 (2017) 5994–6021. https://doi.org/10.1002/anie.201608601
[17] M. Lee, J. Bae, High‐Performance Fabric‐based Electrochemical Capacitors Utilizing the Enhanced Electrochemistry of PEDOT : PSS Hybridized with SnO2 Nanoparticles, Bull. Korean Chem. Soc. 36 (2015) 2101–2106. https://doi.org/10.1002/bkcs.10412
[18] M. Fang, G. Dong, R. Wei, J.C. Ho, Hierarchical nanostructures: Design for sustainable water splitting, Adv. Energy Mater. 7 (2017) 1–25. https://doi.org/10.1002/aenm.201700559
[19] T.A. Le, Q.V. Bui, N.Q. Tran, Y. Cho, Y. Hong, Y. Kawazoe, H. Lee, Synergistic Effects of Nitrogen Doping on MXene for Enhancement of Hydrogen Evolution Reaction, ACS Sustain. Chem. Eng. 7 (2019) 16879–16888. https://doi.org/10.1021/acssuschemeng.9b04470
[20] M. Wang, W. Zhen, B. Tian, J. Ma, G. Lu, The inhibition of hydrogen and oxygen recombination reaction by halogen atoms on over-all water splitting over Pt-TiO2 photocatalyst, Appl. Catal. B Environ. 236 (2018) 240–252. https://doi.org/10.1016/j.apcatb.2018.05.031
[21] R. Vinodh, C. Deviprasath, C.V.V. Muralee Gopi, V.G. Raghavendra Kummara, R. Atchudan, T. Ahamad, H.-J. Kim, M. Yi, Novel 13X Zeolite/PANI electrocatalyst for hydrogen and oxygen evolution reaction, Int. J. Hydrogen Energy. 45 (2020) 28337–28349. https://doi.org/10.1016/j.ijhydene.2020.07.194
[22] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources. 196 (2011) 1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084
[23] S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review, ACS Catal. 6 (2016) 8069–8097. https://doi.org/10.1021/acscatal.6b02479
[24] A.A. Ensafi, N. Zandi-Atashbar, Z. Mohamadi, A. Abdolmaleki, B. Rezaei, Pt-Pd nanoparticles decorated sulfonated graphene-poly(3,4-ethylene dioxythiophene) nanocomposite, An efficient HER electrocatalyst, Energy. 126 (2017) 88–96. https://doi.org/10.1016/j.energy.2017.03.012
[25] H. Shang, Z. Zhang, C. Liu, X. Zhang, S. Li, Z. Wen, S. Ji, J. Sun, MnO2@V2O5 microspheres as cathode materials for high performance aqueous rechargeable Zn-ion battery, J. Electroanal. Chem. 890 (2021) 115253. https://doi.org/10.1016/j.jelechem.2021.115253
[26] K. Thiagarajan, D. Balaji, J. Madhavan, J. Theerthagiri, S.J. Lee, K.-Y. Kwon, M.Y. Choi, Cost-Effective Synthesis of Efficient CoWO4/Ni Nanocomposite Electrode Material for Supercapacitor Applications, Nanomaterials. 10 (2020) 2195. https://doi.org/10.3390/nano10112195
[27] J. Theerthagiri, R.A. Senthil, P. Nithyadharseni, S.J. Lee, G. Durai, P. Kuppusami, J. Madhavan, M.Y. Choi, Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage, Ceram. Int. 46 (2020) 14317–14345. https://doi.org/10.1016/j.ceramint.2020.02.270
[28] X. Lu, H. Dou, B. Gao, C. Yuan, S. Yang, L. Hao, L. Shen, X. Zhang, A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors, Electrochim. Acta. 56 (2011) 5115–5121. https://doi.org/10.1016/j.electacta.2011.03.066
[29] Z.-J. Lu, S.-J. Bao, Y.-T. Gou, C.-J. Cai, C.-C. Ji, M.-W. Xu, J. Song, R. Wang, Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells, RSC Adv. 3 (2013) 3990. https://doi.org/10.1039/c3ra22161j
[30] M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater. 27 (2015) 339–345. https://doi.org/10.1002/adma.201404140
[31] W. Raza, F. Ali, N. Raza, Y. Luo, K. Kim, J. Yang, Recent Advancements in Supercapacitor Technology Nano Energy Recent advancements in supercapacitor technology, Nano Energy. 52 (2018) 441–473. https://doi.org/10.1016/j.nanoen.2018.08.013
[32] K.O. Otun, M.S. Xaba, S. Zong, X. Liu, D. Hildebrandt, S.M. El-Bahy, Z.M. El-Bahy, Double linker MOF-derived NiO and NiO/Ni supercapacitor electrodes for enhanced energy storage, Colloids Surfaces A Physicochem. Eng. Asp. 634 (2022) 128019. https://doi.org/10.1016/j.colsurfa.2021.128019
[33] J. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, Zn-doped Ni-MOF material with a high supercapacitive performance, J. Mater. Chem. A. 2 (2014) 19005–19010. https://doi.org/10.1039/c4ta04346d
[34] S. Krishnan, A.K. Gupta, M.K. Singh, N. Guha, D.K. Rai, Nitrogen-rich Cu-MOF decorated on reduced graphene oxide nanosheets for hybrid supercapacitor applications with enhanced cycling stability, Chem. Eng. J. 435 (2022) 135042. https://doi.org/10.1016/j.cej.2022.135042
[35] J. Banerjee, K. Dutta, M.A. Kader, S.K. Nayak, An overview on the recent developments in polyaniline‐based supercapacitors, Polym. Adv. Technol. 30 (2019) 1902–1921. https://doi.org/10.1002/pat.4624
[36] R. Bolagam, R. Boddula, P. Srinivasan, Hybrid Material of PANI with TiO 2 ‐SnO 2 : Pseudocapacitor Electrode for Higher Performance Supercapacitors, ChemistrySelect. 2 (2017) 65–73. https://doi.org/10.1002/slct.201601421
[37] E. Yoo, H. Zhou, Li−Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts, Am. Chem. Soc. 5 (2011) 3020–3026. https://doi.org/10.1021/nn200084u
[38] A. Dutta, S. Mitra, M. Basak, T. Banerjee, A comprehensive review on batteries and supercapacitors: Development and challenges since their inception, Energy Storage. 5 (2023). https://doi.org/10.1002/est2.339
[39] M. Zhao, B.-Q. Li, X.-Q. Zhang, J.-Q. Huang, Q. Zhang, A Perspective toward Practical Lithium–Sulfur Batteries, ACS Cent. Sci. 6 (2020) 1095–1104. https://doi.org/10.1021/acscentsci.0c00449
[40] Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang, X. Xia, Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage, Adv. Energy Mater. 10 (2020) 1–36. https://doi.org/10.1002/aenm.202000927
[41] Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci. 11 (2016) 10628–10643. https://doi.org/10.20964/2016.12.50
[42] X. Li, H. Xie, Y. Feng, Y. Qu, L. Zhai, H. Sun, X. Liu, C. Hou, All pseudocapacitive MXene-PPy//MnO2 flexible asymmetric supercapacitor, J. Mater. Sci. Mater. Electron. 34 (2023) 1878. https://doi.org/10.1007/s10854-023-11341-6
[43] T.E. Balaji, H. Tanaya Das, T. Maiyalagan, Recent Trends in Bimetallic Oxides and Their Composites as Electrode Materials for Supercapacitor Applications, ChemElectroChem. 8 (2021) 1723–1746. https://doi.org/10.1002/celc.202100098
[44] N.S. Shaikh, S.B. Ubale, V.J. Mane, J.S. Shaikh, V.C. Lokhande, S. Praserthdam, C.D. Lokhande, P. Kanjanaboos, Novel electrodes for supercapacitor: Conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene, J. Alloys Compd. 893 (2022) 161998. https://doi.org/10.1016/j.jallcom.2021.161998
[45] Y. Yan, T. Wang, X. Li, H. Pang, H. Xue, Noble metal-based materials in high-performance supercapacitors, Inorg. Chem. Front. 4 (2017) 33–51. https://doi.org/10.1039/c6qi00199h
[46] Y. Wang, Y. Ding, X. Guo, G. Yu, Conductive polymers for stretchable supercapacitors, Nano Res. 12 (2019) 1978–1987. https://doi.org/10.1007/s12274-019-2296-9


