Influence of tool rotation speed on mechanical and microstructural characteristics of friction stir weld 7075 aluminum alloy reinforced with graphene nano platelets
Rahul Biradar, Sachinkumar Patil
Abstract. The growing demand for lightweight, durable materials within the aerospace industry has motivated researchers to develop composites exhibiting exceptional mechanical properties, thereby enabling a more economical and environment-friendly transformation. Carbonaceous reinforcement is increasingly prioritized due to its exceptional properties in modifying and enhancing the mechanical, microstructure, and tribological properties. In the present research, the nanocomposite of AA7075 aluminum alloy reinforced with graphene nanoplatelets (GNPs) has been developed through friction stir welding (FSW) technique. Obtained the significant process parameter of tool rotation speed 800 rpm, traverse speed 20 mm/min, and tilt angle 2º respectively. Microstructure in nugget zone exhibits fine and uniform grains. It results in significant enhancement of ultimate tensile strength (UTS) 821 MPa and yield strength (YS) 389 MPa. Further, higher hardness of 141 HV is reported in the nugget zone. Moreover, the joint is fractured at nugget zone and it represents the weakest part of the weld joint.
Keywords
AA7075, Friction Stir Welding, Graphene Nanoplatelets, Mechanical Properties, Microstructure
Published online 6/1/2025, 7 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Rahul Biradar, Sachinkumar Patil, Influence of tool rotation speed on mechanical and microstructural characteristics of friction stir weld 7075 aluminum alloy reinforced with graphene nano platelets, Materials Research Proceedings, Vol. 55, pp 95-101, 2025
DOI: https://doi.org/10.21741/9781644903612-15
The article was published as article 15 of the book Materials Joining and Manufacturing Processes
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] S.T.A. Filho, S. Sheikhi, J.F. Santos, C. Bolfarini, Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4, J. Mat. Pro. Tech. 206 (2008) 132-142. https://doi.org/10.1016/j.jmatprotec.2007.12.008
[2] N.A.A. Sathari, L.H. Shah, A.R. Razali, Investigation of single-pass/double-pass techniques on friction stir welding of aluminium, J. Mech. Eng. Sci. 7 (2014) 1053-1061. http://dx.doi.org/10.15282/jmes.7.2014.4.0102
[3] L. H. Shah, Z. Akhtar, M. Ishak, Investigation of aluminum-stainless steel dissimilar weld quality using different filler metals, Int. J. Auto. Mech. Eng. 8 (2013) 1121-1131. http://dx.doi.org/10.15282/ijame.8.2013.3.0091
[4] P. Sachinkumar, S. Narendranath, D. Chakradhar, Microstructure, hardness and tensile properties of friction stir welded aluminum matrix composite reinforced with SiC and Fly Ash, Silicon. 11 (2019) 2557–2565. https://doi.org/10.1007/s12633-018-0044-5
[5] Z.W Zhang, Z.Y Liu, B.L Xiao, D.R Ni, Z.Y Ma, High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing, Carbon. 135 (2018) 215-223. https://doi.org/10.1016/j.carbon.2018.04.029
[6] R. Biradar, S. Patil, A systematic review on microhardness, tensile, wear, and microstructural properties of aluminum matrix composite joints obtained by friction stir welding: past, present and its future, Tran. Ind. Inst. Met. 77 (2024) 1923-1937. https://doi.org/10.1007/s12666-024-03303-1
[7] S.M. Bayazid, H. Farhangi, A. Ghahramani, Investigation of friction stir welding parameters of 6063-7075 aluminum alloys by Taguchi method, Pro. Mat. Sci. 11 (2015) 6-11. https://doi.org/10.1016/j.mspro.2015.11.007
[8] J.A. Hamed, Effect of welding heat input and post-weld aging time on microstructure and mechanical properties in dissimilar friction stir welded AA7075−AA5086, Tran. Non. Met. Soc. China. 27 (2017) 1707−1715. https://doi.org/10.1016/S1003-6326(17)60193-6
[9] M. Rashad, F. Pan, A. Tang, M. Asif, Effect of GNPs addition on mechanical properties of pure aluminum using a semi-powder method, Prog. Natu. Sci: Mat. Int. 24 (2014) 101-108. https://doi.org/10.1016/j.pnsc.2014.03.012
[10] F. Zhiyuan, L. Jiao, M. Jincai, S. Yongjin, Z. Xiaoyuan, M. Yu, Z. Zilong, EBSD characterization of 7075 aluminum alloy and its corrosion behaviors in SRB marine environment, J. Mar. Sci. Eng. 10 (2022) 1-10. https://doi.org/10.3390/jmse10060740
[11] P. Sachinkumar, S. Narendranath, D. Chakradhar, Characterization and evaluation of joint properties of FSWed AA6061/SiC/FA hybrid AMCs using different tool pin profiles, Tran. Ind. Inst. Met. 73 (2020) 2269 – 2279. https://doi.org/10.1007/s12666-020-02035-2
[12] S.A. Khodir, T. Shibayanagi, Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys, Mat. Sci. Engg B. 148 (2008) 82-87. https://doi.org/10.1016/j.mseb.2007.09.024
[13] J.F. Guo, H.C. Chen, C.N. Sun, G. Bi, Z. Sun, J. Wei, Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters, Mat. Des. 56 (2014) 185-192. http://dx.doi.org/10.1016/j.matdes.2013.10.082
[14] P. Sivaraman, T. Nithyanandhan, M. Karthick, S.M. Kirivasan, S. Rajarajan, M. Sivanesa Sundar, Analysis of tensile strength of AA 2014 and AA 7075 dissimilar metals using friction stir welding, Mat. Today. Proc. 37 (2021) 187-192. https://doi.org/10.1016/j.matpr.2020.04.895
[15] T. Amuthan, N. Nagaprasad, R. Krishnaraj, V. Narasimharaj, B. Stalin, V. Vignesh, Experimental study of mechanical properties of AA6061 and AA7075 alloy joints using friction stir welding, Mat. Today. Proc. 47 (2021) 4330-4335. https://doi.org/10.1016/j.matpr.2021.04.628
[16] M. Reimann, J. Goebel, J F. Santos, Microstructure and mechanical properties of keyhole repair welds in AA 7075-T651 using refill friction stir spot welding, Mat. Des. 132 (2017) 283-294. http://dx.doi.org/10.1016/j.matdes.2017.07.013
[17] C. Zhang, G. Huang, Y. Cao, Y. Zhu, W. Lia, X. Wang, Q. Liu, Microstructure and mechanical properties of dissimilar friction stir welded AA2024-7075 joints: Influence of joining material direction, Mat. Sci. Eng A. 766 (2019) 138368. https://doi.org/10.1016/j.msea.2019.138368
[18] N. Minhas, V. Sharma, S. Manda, A. Thakur, Insights into the microstructure evolution and mechanical behavior of dissimilar friction stir welded joints of additively manufactured AlSi10Mg and conventional 7075-T651 aluminum alloys, Mat. Sci. Eng A. 881 (2023) 145407. https://doi.org/10.1016/j.msea.2023.145407
[19] A. Hamdollahzadeh, M. Bahrami, M.F. Nikoo, A. Yusefi, M.K.B. Givi, N. Parvin, Microstructure evolutions and mechanical properties of nano-SiC-fortified AA7075 friction stir weldment: The role of second pass processing, J. Manu. Pro. 20 (2015) 367-373. http://dx.doi.org/10.1016/j.jmapro.2015.06.017
[20] E. Cetkin, Y.H Çelik, S. Temiz, Microstructure and mechanical properties of AA7075/AA5182 jointed by FSW, J. Mat. Proc. Tech. 268 (2019) 107-116. https://doi.org/10.1016/j.jmatprotec.2019.01.005
[21] M. Simoncini, A. Forcellese, Effect of the welding parameters and tool configuration on micro and macro mechanical properties of similar and dissimilar FSWed joints in AA5754 and AZ31 thin sheets, Mat. Des. 41 (2012) 50-60. http://dx.doi.org/10.1016/j.matdes.2012.04.057
[22] S.S. Mirjavadi, M. Alipour, S. Emamian, S. Kord, A.M.S. Hamouda, G. Praveennath, R. Keshavamurthy, Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties, and wear resistance, J. Allo. Comp. 712 (2017) 795-803. http://dx.doi.org/10.1016/j.jallcom.2017.04.114
[23] B. Singh, K. Saxena, P. Singhal, Role of various tool pin profiles in friction stir welding of AA2024 alloys, J. Mat. Eng. Perf. 30 (2021) 8606–8615. https://doi.org/10.1007/s11665-021-06017-3
[24] H. Suthar, A. Bhattacharya, S. K. Paul, Local deformation response and failure behavior of AA6061-AA6061 and AA6061-AA7075 friction stir welds, CIRP. J. Manu. Sci. Tech. 30 (2020) 12-24. https://doi.org/10.1016/j.cirpj.2020.03.006