The location effect on IN625 fabricated by the laser powder bed fusion process

The location effect on IN625 fabricated by the laser powder bed fusion process

Sara Bocchi, Mariangela Quarto, Gianluca D’Urso, Tommaso Pastore, Tommaso Persico

Abstract. Laser Powder Bed Fusion (L-PBF) has emerged as a transformative additive manufacturing technique, enabling the production of components with complex geometries and advanced material properties. This study investigates the processing of Inconel 625 through L-PBF, focusing on enhancing porosity control and mechanical performance. The research employed commercially available Inconel 625 powder and various parameters, including laser power, scanning speed, and layer thickness, were considered to achieve defect-free structures. Vickers hardness, porosity analysis, and metallographic etching were used to evaluate the mechanical properties and microstructural characteristics of the printed samples. The results demonstrated an average porosity of 0.12%, with the smallest pores dominating the microstructure.

Keywords
Inconel 625, L-PBF, Additive Manufacturing, Mechanical Properties

Published online 5/7/2025, 9 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Sara Bocchi, Mariangela Quarto, Gianluca D’Urso, Tommaso Pastore, Tommaso Persico, The location effect on IN625 fabricated by the laser powder bed fusion process, Materials Research Proceedings, Vol. 54, pp 78-86, 2025

DOI: https://doi.org/10.21741/9781644903599-9

The article was published as article 9 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A. Salmi, F. Calignano, M. Galati, E. Atzeni, An integrated design methodology for components produced by laser powder bed fusion (L-PBF) process, Virtual Phys. Prototyp. 13 (2018) 191–202. https://doi.org/10.1080/17452759.2018.1442229
[2] Z. Wu, S.P. Narra, A. Rollett, Exploring the fabrication limits of thin-wall structures in a laser powder bed fusion process, Int. J. Adv. Manuf. Technol. 110 (2020) 191–207. https://doi.org/10.1007/s00170-020-05827-4
[3] A.M. Khorasani, I. Gibson, J.K. Veetil, A.H. Ghasemi, A review of technological improvements in laser-based powder bed fusion of metal printers, Int. J. Adv. Manuf. Technol. 108 (2020) 191–209. https://doi.org/10.1007/s00170-020-05361-3
[4] Z. Liu, Q. Zhou, X. Liang, X. Wang, G. Li, K. Vanmeensel, J. Xie, Alloy design for laser powder bed fusion additive manufacturing: a critical review, Int. J. Extrem. Manuf. 6 (2024) 022002. https://doi.org/10.1088/2631-7990/ad1657
[5] E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel, J. Mater. Process. Technol. 249 (2017) 255–263. https://doi.org/10.1016/j.jmatprotec.2017.05.042
[6] K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, F. Rezai, Effects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties, Mater. Sci. Eng. A. 735 (2018) 182–190. https://doi.org/10.1016/j.msea.2018.08.037
[7] Z. Wang, Z. Xiao, Y. Tse, C. Huang, W. Zhang, Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy, Opt. Laser Technol. 112 (2019) 159–167. https://doi.org/10.1016/j.optlastec.2018.11.014
[8] J. Robinson, M. Stanford, A. Arjunan, Correlation between selective laser melting parameters, pore defects and tensile properties of 99.9 % silver, Mater. Today Commun. 25 (2020). https://doi.org/10.1016/j.mtcomm.2020.101550
[9] X. Yan, C. Chang, D. Dong, S. Gao, W. Ma, M. Liu, H. Liao, S. Yin, Microstructure and mechanical properties of pure copper manufactured by selective laser melting, Mater. Sci. Eng. A. 789 (2020). https://doi.org/10.1016/j.msea.2020.139615
[10] M. Guo, D. Gu, L. Xi, H. Zhang, J. Zhang, J. Yang, R. Wang, Selective laser melting additive manufacturing of pure tungsten: Role of volumetric energy density on densification, microstructure and mechanical properties, Int. J. Refract. Met. Hard Mater. 84 (2019). https://doi.org/10.1016/j.ijrmhm.2019.105025
[11] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties, Prog. Mater. Sci. 92 (2018) 112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001
[12] A.R. Ghazi, H.I. Khan, M. Farooq, S. Jahangir, M.T. Anwar, Effect of temperature and medium environment on corrosion fatigue behavior of Inconel 625, Mater. Corros. 74 (2023) 1030–1038. https://doi.org/10.1002/maco.202313748
[13] V. Shankar, K. Bhanu Sankara Rao, S.L. Mannan, Microstructure and mechanical properties of Inconel 625 superalloy, J. Nucl. Mater. 288 (2001) 222–232. https://doi.org/10.1016/S0022-3115(00)00723-6
[14] X. Wang, J.A. Muñiz-Lerma, M. Attarian Shandiz, O. Sanchez-Mata, M. Brochu, Crystallographic-orientation-dependent tensile behaviours of stainless steel 316L fabricated by laser powder bed fusion, Mater. Sci. Eng. A. 766 (2019). https://doi.org/10.1016/j.msea.2019.138395
[15] F. Zhang, L.E. Levine, A.J. Allen, C.E. Campbell, E.A. Lass, S. Cheruvathur, M.R. Stoudt, M.E. Williams, Y. Idell, Homogenization kinetics of a nickel-based superalloy produced by powder bed fusion laser sintering, Scr. Mater. 131 (2017) 98–102. https://doi.org/10.1016/j.scriptamat.2016.12.037
[16] K. Wierzbanowski, J. Tarasiuk, B. Bacroix, A. Miroux, O. Castelnau, Deformation characteristics important for nucleation process. Case of low-carbon steel, Arch. Metall. 44 (1999) 183–201. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1900148 (accessed December 20, 2024).
[17] A. Kreitcberg, V. Brailovski, S. Turenne, Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion, Mater. Sci. Eng. A. 689 (2017) 1–10. https://doi.org/10.1016/j.msea.2017.02.038
[18] E.A. Lass, M.R. Stoudt, M.E. Williams, M.B. Katz, L.E. Levine, T.Q. Phan, T.H. Gnaeupel-Herold, D.S. Ng, Formation of the Ni3Nb δ-Phase in Stress-Relieved Inconel 625 Produced via Laser Powder-Bed Fusion Additive Manufacturing, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48 (2017) 5547–5558. https://doi.org/10.1007/s11661-017-4304-6
[19] C. Li, R. White, X.Y. Fang, M. Weaver, Y.B. Guo, Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment, Mater. Sci. Eng. A. 705 (2017) 20–31. https://doi.org/10.1016/j.msea.2017.08.058
[20] G. Marchese, X. Garmendia Colera, F. Calignano, M. Lorusso, S. Biamino, P. Minetola, D. Manfredi, Characterization and Comparison of Inconel 625 Processed by Selective Laser Melting and Laser Metal Deposition, Adv. Eng. Mater. 19 (2017). https://doi.org/10.1002/adem.201600635
[21] K. Amato, Comparison of Microstructures and Properties for a Ni-Base Superalloy (Alloy 625) Fabricated by Electron Beam Melting, J. Mater. Sci. Res. 1 (2012). https://doi.org/10.5539/jmsr.v1n2p3
[22] R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, A.D. Rollett, Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging, Science (80-. ). 363 (2019) 849–852. https://doi.org/10.1126/science.aav4687
[23] C.J. Todaro, M. Rashidi, R.L. Liu, S. Gao, T.P. Le, J.E. Fronda, J. Setyadji, Y.T. Tang, M. Seita, Laser powder bed fusion of high-strength and corrosion-resistant Inconel alloy 725, Mater. Charact. 194 (2022) 112454. https://doi.org/10.1016/j.matchar.2022.112454
[24] T. Mukherjee, T. DebRoy, Mitigation of lack of fusion defects in powder bed fusion additive manufacturing, J. Manuf. Process. 36 (2018) 442–449. https://doi.org/10.1016/j.jmapro.2018.10.028
[25] C. Schwerz, F. Schulz, E. Natesan, L. Nyborg, Increasing productivity of laser powder bed fusion manufactured Hastelloy X through modification of process parameters, J. Manuf. Process. 78 (2022) 231–241. https://doi.org/10.1016/j.jmapro.2022.04.013
[26] Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials ASTM E92-17, (n.d.). https://www.astm.org/e0092-17.html
[27] A. Gamon, E. Arrieta, P.R. Gradl, C. Katsarelis, L.E. Murr, R.B. Wicker, F. Medina, Microstructure and hardness comparison of as-built inconel 625 alloy following various additive manufacturing processes, Results Mater. 12 (2021) 100239. https://doi.org/10.1016/j.rinma.2021.100239
[28] F. Klocke, L. Hensgen, A. Klink, L. Ehle, A. Schwedt, Structure and Composition of the White Layer in the Wire-EDM Process, in: Procedia CIRP, Elsevier, 2016: pp. 673–678. https://doi.org/10.1016/j.procir.2016.02.300
[29] N. Ahmed, I. Barsoum, G. Haidemenopoulos, R.K.A. Al-Rub, Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel: A review, J. Manuf. Process. 75 (2022) 415–434. https://doi.org/10.1016/j.jmapro.2021.12.064
[30] A. Evangelou, R. Stylianou, A. Loizou, D. Kim, A. Liang, P. Reed, G. Constantinides, T. Kyratsi, Effects of process parameters and scan strategy on the microstructure and density of stainless steel 316 L produced via laser powder bed fusion, J. Alloy. Metall. Syst. 3 (2023) 100027. https://doi.org/10.1016/j.jalmes.2023.100027