Modeling of charge welds evolution through Cahn-Hilliard equation for interaction between different Fluids: Experimental-numerical comparison with industrial case studies
Sara Di Donato, Riccardo Pelaccia, Marco Negozio, Barbara Reggiani, Lorenzo Donati
Abstract. In the hot extrusion process for metals, the interaction between the old and new billet materials during each cycle contaminates a specific length of the extruded profile. Experimental analysis of defect evolution is both time-intensive and costly, while empirical industrial methods and analytical formulas lack the precision required in scenarios where minimizing scrap is critical. To address this, a numerical model was developed using COMSOL Multiphysics® software, coupling the Navier-Stokes equations with the Cahn-Hilliard equation to investigate the interaction between two immiscible fluids with very high viscosities—representing the old and new billet materials. The model’s accuracy was validated through four industrial case studies, that varied in terms of profile-shape complexity and material extruded.
Keywords
Extrusion, Charge Welds Defects, Advanced Numerical Simulation, Aluminum Alloys
Published online 5/7/2025, 10 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Sara Di Donato, Riccardo Pelaccia, Marco Negozio, Barbara Reggiani, Lorenzo Donati, Modeling of charge welds evolution through Cahn-Hilliard equation for interaction between different Fluids: Experimental-numerical comparison with industrial case studies, Materials Research Proceedings, Vol. 54, pp 799-808, 2025
DOI: https://doi.org/10.21741/9781644903599-86
The article was published as article 86 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] R. Akeret, Properties of pressure welds in extruded aluminum alloy sections, J. Inst. Met 10 (1972) 202.
[2] G.J. Oberhausen, A.A.A. Christopher, D.R. Cooper, Reducing Aluminum Extrusion Transverse Weld Process Scrap, in: G. Daehn, J. Cao, B. Kinsey, E. Tekkaya, A. Vivek, Y. Yoshida (Eds.), Forming the Future, Springer International Publishing, Cham, 2021: pp. 1003–1019. https://doi.org/10.1007/978-3-030-75381-8_84
[3] Ö. Ayer, İ. Karakaya, Investigation of welding quality and internal elongation problem in aluminum extrusion, Journal of Manufacturing Processes 106 (2023) 254–264. https://doi.org/10.1016/j.jmapro.2023.10.001
[4] Y. Mahmoodkhani, M.A. Wells, N. Parson, W.J. Poole, Numerical modelling of the material flow during extrusion of aluminium alloys and transverse weld formation, Journal of Materials Processing Technology 214 (2014) 688–700. https://doi.org/10.1016/j.jmatprotec.2013.09.028
[5] Y. Mahmoodkhani, M. Wells, N. Parson, C. Jowett, W. Poole, Modeling the Formation of Transverse Weld during Billet-on-Billet Extrusion, Materials 7 (2014) 3470–3480. https://doi.org/10.3390/ma7053470
[6] J. Yu, G. Zhao, L. Chen, Investigation of interface evolution, microstructure and mechanical properties of solid-state bonding seams in hot extrusion process of aluminum alloy profiles, Journal of Materials Processing Technology 230 (2016) 153–166. https://doi.org/10.1016/j.jmatprotec.2015.11.020
[7] Z. He, H. Wang, M. Wang, G. Li, Simulation of extrusion process of complicated aluminium profile and die trial, Transactions of Nonferrous Metals Society of China 22 (2012) 1732–1737. https://doi.org/10.1016/S1003-6326(11)61380-0
[8] Q. Li, C. Harris, M.R. Jolly, Finite element modelling simulation of transverse welding phenomenon in aluminium extrusion process, Materials & Design 24 (2003) 493–496. https://doi.org/10.1016/S0261-3069(03)00123-7
[9] M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, T. Pinter, L. Tomesani, Finite Element Model Prediction of Charge Weld Behaviour in AA6082 and AA6063 Extruded Profiles, J. of Materi Eng and Perform 30 (2021) 4691–4699. https://doi.org/10.1007/s11665-021-05752-x
[10] M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, L. Tomesani, T. Pinter, FEM Validation of Front End and Back End Defects Evolution in AA6063 and AA6082 Aluminum Alloys Profiles, Procedia Manufacturing 47 (2020) 202–208. https://doi.org/10.1016/j.promfg.2020.04.178
[11] M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, S. Di Donato, Validation of charge welds and skin contamination FEM predictions in the extrusion of a AA6082 aluminum alloy, in: 2023: pp. 86–93. https://doi.org/10.21741/9781644902714-11
[12] S. Di Donato, R. Pelaccia, M. Negozio, Phase Field Method for the Assessment of the New-Old Billet Material Interaction during Continuous Extrusion Using COMSOL Multiphysics, J.ofMateriEngandPerform(2024). https://doi.org/10.1007/s11665-024-10013-8
[13] M. Negozio, L. Donati, R. Pelaccia, B. Reggiani, S. Di Donato, Experimental analysis and modeling of the recrystallization behaviour of a AA6060 extruded profile, in: 2023: pp. 477–486. https://doi.org/10.21741/9781644902479-52
[14] R. Pelaccia, M. Negozio, S.D. Donato, L. Donati, B. Reggiani, Recent Trends in Nitrogen Cooling Modelling of Extrusion Dies, Key Engineering Materials 987 (2024) 11–22. https://doi.org/doi:10.4028/p-Q0NDkB
[15] R. Pelaccia, M. Negozio, S. Di Donato, B. Reggiani, L. Donati, Extrusion Benchmark 2023: Effect of Die Design on Profile Speed, Seam Weld Quality and Microstructure of Hollow Tubes, Key Engineering Materials 988 (2024) 47–62. https://doi.org/10.4028/p-gNXRC5
[16] R. Pelaccia, M. Negozio, S. Di Donato, B. Reggiani, L. Donati, Numerical simulation of the extrusion process with different FEM code approaches: analysis of thermal field, profile speed, defects evolution, and microstructure of hollow tubes, in: 2024: pp. 771–780. https://doi.org/10.21741/9781644903131-85
[17] M. Negozio, A. Segatori, R. Pelaccia, B. Reggiani, S. Di Donato, L. Donati, Modeling of recrystallization behaviour of AA6xxx aluminum alloy during extrusion process, Transactions of Nonferrous Metals Society of China 34 (2024) 3170–3184. https://doi.org/10.1016/S1003-6326(24)66600-8
[18] B. Reggiani, L. Donati, Prediction of liquid nitrogen die cooling effect on the extrusion process parameters by means of FE simulations and experimental validation, Journal of Manufacturing Processes 41 (2019) 231–241. https://doi.org/10.1016/j.jmapro.2019.04.002
[19] E. Giarmas, D. Tzetzis, Optimization of die design for extrusion of 6xxx series aluminum alloys through finite element analysis: a critical review, Int J Adv Manuf Technol 119 (2022) 5529–5551. https://doi.org/10.1007/s00170-022-08694-3
[20] L. Donati, B. Reggiani, R. Pelaccia, M. Negozio, S. Di Donato, Advancements in extrusion and drawing: a review of the contributes by the ESAFORM community, Int J Mater Form 15 (2022) 41. https://doi.org/10.1007/s12289-022-01664-w
[21] R. Pelaccia, P.E. Santangelo, A Homogeneous Flow Model for nitrogen cooling in the aluminum-alloy extrusion process, International Journal of Heat and Mass Transfer 195 (2022) 123–202. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123202
[22] X. Zhuang, S. Zhou, G.D. Huynh, P. Areias, T. Rabczuk, Phase field modeling and computer implementation: A review, Engineering Fracture Mechanics 262 (2022) 108234. https://doi.org/10.1016/j.engfracmech.2022.108234
[23] J. Kim, Phase-Field Models for Multi-Component Fluid Flows, Commun. Comput. Phys. 12 (2012) 613–661. https://doi.org/10.4208/cicp.301110.040811a
[24] R. Pelaccia, B. Reggiani, M. Negozio, L. Donati, Liquid nitrogen in the industrial practice of hot aluminium extrusion: experimental and numerical investigation, Int J Adv Manuf Technol 119 (2022) 3141–3155. https://doi.org/10.1007/s00170-021-08422-3