Modelling bead deposition in material extrusion using the smoothed particle hydrodynamics framework PySPH

Modelling bead deposition in material extrusion using the smoothed particle hydrodynamics framework PySPH

Lukas HOF, Felix FRÖLICH, Florian WITTEMANN, Luise KÄRGER

Abstract. Parts manufactured using the additive Material Extrusion (MEX) process comprise a small-scale mesostructure of beads and voids. In this work, a numerical model is created with the goal of predicting the formation of this mesostructure. Therefore, the Smoothed Particle Hydrodynamics (SPH) framework PYSPH is extended with a thermal model and used to simulate the extrusion of multiple beads. The SPH method is well suited to model the complex evolution of free surfaces. While the implemented conductive heat transport model agrees well with a thermal Finite Element model, the heat losses at the surface due to radiation and convection are significantly overestimated. An extrusion of multiple layers of beads shows that the inability of the used SPH-scheme to capture the fluid’s incompressibility and high viscosity prevents it from accurately predicting the formation of the mesostructure.

Keywords
Material Extrusion, FFF, FDM, Smoothed Particle Hydrodynamics, Heat Balance

Published online 5/7/2025, 10 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Lukas HOF, Felix FRÖLICH, Florian WITTEMANN, Luise KÄRGER, Modelling bead deposition in material extrusion using the smoothed particle hydrodynamics framework PySPH, Materials Research Proceedings, Vol. 54, pp 68-77, 2025

DOI: https://doi.org/10.21741/9781644903599-8

The article was published as article 8 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer New York, New York, NY, 2015. https://doi.org/10.1007/978-1-4939-2113-3
[2] O. Luzanin, D. Movrin, V. Stathopoulos, P. Pandis, T. Radusin, V. Guduric, Impact of processing parameters on tensile strength, in-process crystallinity and mesostructure in FDM-fabricated PLA specimens, Rapid Prototyp. J. 25 (2019) 1398–1410. https://doi.org/10.1108/RPJ-12-2018-0316
[3] F. Frölich, L. Bechtloff, B.M. Scheuring, A.L. Heuer, F. Wittemann, L. Kärger, W.V. Liebig, Evaluation of mechanical properties characterization of additively manufactured components, Prog. Addit. Manuf. (2024). https://doi.org/10.1007/s40964-024-00700-2
[4] L.B. Lucy, A numerical approach to the testing of the fission hypothesis, Astron. J. 82 (1977) 1013. https://doi.org/10.1086/112164
[5] R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc. 181 (1977) 375–389. https://doi.org/10.1093/MNRAS/181.3.375
[6] D. Hesse, P. Hohenberg, M. Stommel, Z. Kunststofftechnik, Entwicklung eines rechnergestützten Ansatzes zur Abbildung des Strangablegens in der extrusionsbasierten additiven Fertigung, Z. Kunststofftechnik J. Plast. Technol. 17 (2021) 3
[7] H. Xia, J. Lu, G. Tryggvason, Simulations of fused filament fabrication using a front tracking method, Int. J. Heat Mass Transf. 138 (2019) 1310–1319. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.132
[8] B. Šeta, M. Sandberg, M. Brander, Md.T. Mollah, D.K. Pokkalla, V. Kumar, J. Spangenberg, Numerical modeling of fiber orientation in multi-layer, isothermal material-extrusion big area additive manufacturing, Addit. Manuf. 92 (2024) 104396. https://doi.org/10.1016/j.addma.2024.104396
[9] M.P. Serdeczny, R. Comminal, D.B. Pedersen, J. Spangenberg, Numerical simulations of the mesostructure formation in material extrusion additive manufacturing, Addit. Manuf. 28 (2019) 419–429. https://doi.org/10.1016/j.addma.2019.05.024
[10] D. Yang, K. Wu, L. Wan, Y. Sheng, A Particle Element Approach for Modelling the 3D Printing Process of Fibre Reinforced Polymer Composites, J. Manuf. Mater. Process. 1 (2017) 10. https://doi.org/10.3390/jmmp1010010
[11] E. Bertevas, J. Férec, B.C. Khoo, G. Ausias, N. Phan-Thien, Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process, Phys. Fluids 30 (2018) 103103. https://doi.org/10.1063/1.5047088
[12] Z. Ouyang, E. Bertevas, D. Wang, B.C. Khoo, J. Férec, G. Ausias, N. Phan-Thien, A smoothed particle hydrodynamics study of a non-isothermal and thermally anisotropic fused deposition modeling process for a fiber-filled composite, Phys. Fluids 32 (2020). https://doi.org/10.1063/5.0004527
[13] M. Makino, D. Fukuzawa, T. Murashima, M. Kawakami, H. Furukawa, Analysis of deposition modeling by particle method simulation, Microsyst. Technol. 23 (2016) 1177–1181. https://doi.org/10.1007/s00542-016-3047-4
[14] P. Pibulchinda, E. Barocio, A.J. Favaloro, R.B. Pipes, Influence of printing conditions on the extrudate shape and fiber orientation in extrusion deposition additive manufacturing, Compos. Part B Eng. 261 (2023) 110793. https://doi.org/10.1016/j.compositesb.2023.110793
[15] P. Ramachandran, A. Bhosale, K. Puri, P. Negi, A. Muta, A. Dinesh, D. Menon, R. Govind, S. Sanka, A.S. Sebastian, A. Sen, R. Kaushik, A. Kumar, V. Kurapati, M. Patil, D. Tavker, P. Pandey, C. Kaushik, A. Dutt, A. Agarwal, PySPH: A Python-based Framework for Smoothed Particle Hydrodynamics, ACM Trans. Math. Softw. 47 (2021) 1–38. https://doi.org/10.1145/3460773
[16] L. Hof, Entwicklung eines Simulationsmodells zur Strangablage in der Materialextrusion mit der Smoothed Particle Hydrodynamics Methode, Masterarbeit, Karlsruher Institut für Technologie (KIT), 2022
[17] P.W. Cleary, J.J. Monaghan, Conduction Modelling Using Smoothed Particle Hydrodynamics, J. Comput. Phys. 148 (1999) 227–264. https://doi.org/10.1006/jcph.1998.6118
[18] L. Brookshaw, A Method of Calculating Radiative Heat Diffusion in Particle Simulations, Publ. Astron. Soc. Aust. 6 (1985) 207–210. https://doi.org/10.1017/S1323358000018117
[19] P.W. Randles, L.D. Libersky, Smoothed Particle Hydrodynamics: Some recent improvements and applications, Comput. Methods Appl. Mech. Eng. 139 (1996) 375–408. https://doi.org/10.1016/S0045-7825(96)01090-0
[20] M. Doring, Développement d’une méthode SPH pour les applications à surface libre en hydrodynamique, These de doctorat, Nantes, 2005. https://www.theses.fr/en/2005NANT2116 (accessed September 23, 2022).
[21] S. Marrone, A. Colagrossi, D. Le Touzé, G. Graziani, Fast free-surface detection and level-set function definition in SPH solvers, J. Comput. Phys. 229 (2010) 3652–3663. https://doi.org/10.1016/j.jcp.2010.01.019
[22] Autodesk Inc., Moldflow Insight Help | About material databases, Autodesk Moldflow Insight 2021 (2021). https://help.autodesk.com/view/MFIA/2021/ENU/?guid=GUID-9C852155-1ECC-4A68-A45D-F3FC5E79E057 (accessed September 21, 2022).
[23] J.R. Clausen, Entropically damped form of artificial compressibility for explicit simulation of incompressible flow, Phys. Rev. E 87 (2013) 013309. https://doi.org/10.1103/PhysRevE.87.013309
[24] P. Ramachandran, K. Puri, Entropically damped artificial compressibility for SPH, Comput. Fluids 179 (2019) 579–594. https://doi.org/10.1016/j.compfluid.2018.11.023
[25] G. Oger, S. Marrone, D. Le Touzé, M. de Leffe, SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms, J. Comput. Phys. 313 (2016) 76–98. https://doi.org/10.1016/j.jcp.2016.02.039
[26] J. Knirsch, F. Frölich, L. Hof, F. Wittemann, L. Kärger, pyGCodeDecode: A Python package for time-accurate GCode simulation in material extrusion processes, J. Open Source Softw. 9 (2024) 6465. https://doi.org/10.21105/joss.06465