An open-source object oriented finite element software for composite forming

An open-source object oriented finite element software for composite forming

Eduardo Guzman-Maldonado, Nahiene Hamila

Abstract. This paper presents the development of an explicit finite element program to simulate the forming processes of composite materials. An object-oriented programming paradigm has been adopted using the C++ programming language. One of the main advantages of object-oriented programming is the modularity of the program. By using abstract classes, it is possible to represent base components, such as materials, finite elements, loads or constraints in a general manner. Specific implementations, like an elastic material or particular shell element, can then be defined through inheritance. The program contains specific finite elements and constitutive fibrous reinforcement models that have been widely published in the literature. The presented software has been released under an open-source license model to encourage collaboration between laboratories involved in the composite forming field.

Keywords
Finite Element Software, Open Source, Composite Forming

Published online 5/7/2025, 11 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Eduardo Guzman-Maldonado, Nahiene Hamila, An open-source object oriented finite element software for composite forming, Materials Research Proceedings, Vol. 54, pp 665-675, 2025

DOI: https://doi.org/10.21741/9781644903599-72

The article was published as article 72 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] K.D. Potter, The early history of the resin transfer moulding process for aerospace applications., Compos. Part Appl. Sci. Manuf. 30 (1999) 619–621. https://doi.org/10.1016/S1359-835X(98)00179-1
[2] S. Chen, O.P.L. McGregor, A. Endruweit, M.T. Elsmore, D.S.A. De Focatiis, L.T. Harper, N.A. Warrior, Double diaphragm forming simulation for complex composite structures, Compos. Part Appl. Sci. Manuf. 95 (2017) 346–358. https://doi.org/10.1016/j.compositesa.2017.01.017
[3] E. Guzman Maldonado, N. Bigot, Y. Denis, N. Hamila, Thermomechanical modeling and experimental characterization of continuous fiber-reinforced thermoplastic composites at forming temperatures, in: P. Wang, N. Hamila (Eds.), Adv. Struct. Text. Compos. Form., Woodhead Publishing, 2025: pp. 355–388. https://doi.org/10.1016/B978-0-443-21578-0.00015-9
[4] J.P.-H. Belnoue, T. Mesogitis, O.J. Nixon-Pearson, J. Kratz, D.S. Ivanov, I.K. Partridge, K.D. Potter, S.R. Hallett, Understanding and predicting defect formation in automated fibre placement pre-preg laminates, Compos. Part Appl. Sci. Manuf. 102 (2017) 196–206. https://doi.org/10.1016/j.compositesa.2017.08.008
[5] P. Fideu, E. Guzman Maldonado, An industrial perspective on the present and future of thermoforming of prepregs: applications, trends, and challenges, in: P. Wang, N. Hamila (Eds.), Adv. Struct. Text. Compos. Form., Woodhead Publishing, 2025: pp. 607–624. https://doi.org/10.1016/B978-0-443-21578-0.00024-X
[6] J.S. Lightfoot, M.R. Wisnom, K. Potter, Defects in woven preforms: Formation mechanisms and the effects of laminate design and layup protocol, Compos. Part Appl. Sci. Manuf. 51 (2013) 99–107. https://doi.org/10.1016/j.compositesa.2013.04.004
[7] J. Sjölander, P. Hallander, M. Åkermo, Forming induced wrinkling of composite laminates: A numerical study on wrinkling mechanisms, Compos. Part Appl. Sci. Manuf. 81 (2016) 41–51. https://doi.org/10.1016/j.compositesa.2015.10.012
[8] P. Boisse, J. Huang, E. Guzman-Maldonado, Analysis and Modeling of Wrinkling in Composite Forming, J. Compos. Sci. 5 (2021). https://doi.org/10.3390/jcs5030081
[9] D. Durville, Simulation of the mechanical behaviour of woven fabrics at the scale of fibers, Int. J. Mater. Form. 3 (2010) 1241–1251. https://doi.org/10.1007/s12289-009-0674-7
[10] P. Badel, S. Gauthier, E. Vidal-Sallé, P. Boisse, Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming, Compos. Part Appl. Sci. Manuf. 40 (2009) 997–1007. https://doi.org/10.1016/j.compositesa.2008.04.015
[11] N. Naouar, E. Vidal-Salle, J. Schneider, E. Maire, P. Boisse, Meso-scale FE analyses of textile composite reinforcement deformation based on X-Ray computed tomography, Compos. Struct. 116 (2014) 165–176. https://doi.org/10.1016/j.compstruct.2014.04.026
[12] E. De Luycker, N. Hamila, Modeling of hyperelastic bending of fibrous media using second-gradient isogeometric analysis: Weaving and braiding applications, Compos. Part Appl. Sci. Manuf. 167 (2023) 107415. https://doi.org/10.1016/j.compositesa.2022.107415
[13] N. Hamila, P. Boisse, F. Sabourin, M. Brunet, A semi‐discrete shell finite element for textile composite reinforcement forming simulation, Int. J. Numer. Methods Eng. 79 (2009) 1443–1466. https://doi.org/10.1002/nme.2625
[14] S.P. Haanappel, R.H.W. Ten Thije, U. Sachs, B. Rietman, R. Akkerman, Formability analyses of uni-directional and textile reinforced thermoplastics, Compos. Part Appl. Sci. Manuf. 56 (2014) 80–92. https://doi.org/10.1016/j.compositesa.2013.09.009
[15] P. Harrison, Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh, Compos. Part Appl. Sci. Manuf. 81 (2016) 145–157. https://doi.org/10.1016/j.compositesa.2015.11.005
[16] E. Guzman-Maldonado, N. Hamila, N. Naouar, G. Moulin, P. Boisse, Simulation of thermoplastic prepreg thermoforming based on a visco-hyperelastic model and a thermal homogenization, Mater. Des. 93 (2016) 431–442. https://doi.org/10.1016/j.matdes.2015.12.166
[17] D. Dörr, T. Joppich, D. Kugele, F. Henning, L. Kärger, A coupled thermomechanical approach for finite element forming simulation of continuously fiber-reinforced semi-crystalline thermoplastics, Compos. Part Appl. Sci. Manuf. 125 (2019) 105508. https://doi.org/10.1016/j.compositesa.2019.105508
[18] E. Guzman-Maldonado, S. Bel, D. Bloom, P. Fideu, P. Boisse, Experimental and numerical analyses of the mechanical behavior during draping of non-orthogonal bi-axial non-crimp fabric composite reinforcements, Mater. Des. 218 (2022) 110682. https://doi.org/10.1016/j.matdes.2022.110682
[19] J. Li, N. Hamila, E. Guzman-Maldonado, G. L’Hostis, P. Wang, Numerical modeling and simulation prediction of the forming process of 3D-tubular braided composite reinforcements, Thin-Walled Struct. 205 (2024) 112426. https://doi.org/10.1016/j.tws.2024.112426
[20] O. Döbrich, T. Gereke, O. Diestel, S. Krzywinski, C. Cherif, Decoupling the bending behavior and the membrane properties of finite shell elements for a correct description of the mechanical behavior of textiles with a laminate formulation, J. Ind. Text. 44 (2014) 70–84. https://doi.org/10.1177/1528083713477442
[21] J.L. Gorczyca-Cole, J.A. Sherwood, J. Chen, A friction model for thermostamping commingled glass–polypropylene woven fabrics, Compos. Part Appl. Sci. Manuf. 38 (2007) 393–406. https://doi.org/10.1016/j.compositesa.2006.03.006
[22] S. Allaoui, C. Cellard, G. Hivet, Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms, Compos. Part Appl. Sci. Manuf. 68 (2015) 336–345. https://doi.org/10.1016/j.compositesa.2014.10.017
[23] B. Liang, N. Hamila, M. Peillon, P. Boisse, Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations, Compos. Part Appl. Sci. Manuf. 67 (2014) 111–122. https://doi.org/10.1016/j.compositesa.2014.08.020
[24] R. Bai, J. Colmars, N. Naouar, P. Boisse, A specific 3D shell approach for textile composite reinforcements under large deformation, Compos. Part Appl. Sci. Manuf. 139 (2020) 106135. https://doi.org/10.1016/j.compositesa.2020.106135
[25] H. Xiong, Simulation of forming, compaction and consolidation of thermoplastic composites based on solid shell elements, phdthesis, Université de Lyon, 2017. https://theses.hal.science/tel-01921520 (accessed August 10, 2024)
[26] Y. Dubois-Pèlerin, P. Pegon, Improving Modularity in Object-Oriented Finite Element Programming, Commun. Numer. Methods Eng. 13 (1997) 193–198. https://doi.org/10.1002/(SICI)1099-0887(199703)13:3<193::AID-CNM46>3.0.CO;2-I
[27] J. Besson, R. Foerch, Large scale object-oriented finite element code design, Comput. Methods Appl. Mech. Eng. 142 (1997) 165–187. https://doi.org/10.1016/S0045-7825(96)01124-3
[28] M.D. Rucki, G.R. Miller, An adaptable finite element modelling kernel, Comput. Struct. 69 (1998) 399–409. https://doi.org/10.1016/S0045-7949(98)00104-7
[29] Y. Dubois-Pèlerin, T. Zimmermann, Object-oriented finite element programming: III. An efficient implementation in C++, Comput. Methods Appl. Mech. Eng. 108 (1993) 165–183. https://doi.org/10.1016/0045-7825(93)90159-U
[30] J. Besson, R. Foerch, Object-Oriented Programming Applied to the Finite Element Method Part I. General Concepts, Rev. Eur. Éléments Finis 7 (1998) 535–566. https://doi.org/10.1080/12506559.1998.10511321
[31] O. Pantalé, An object-oriented programming of an explicit dynamics code: application to impact simulation, Adv. Eng. Softw. 33 (2002) 297–306. https://doi.org/10.1016/S0965-9978(02)00017-0
[32] D.J. Benson, An efficient, accurate, simple ale method for nonlinear finite element programs, Comput. Methods Appl. Mech. Eng. 72 (1989) 305–350. https://doi.org/10.1016/0045-7825(89)90003-0
[33] S. Haney, J. Crotlinger, How templates enable high-performance scientific computing in C++, Comput. Sci. Eng. 1 (1999) 66–72. https://doi.org/10.1109/5992.774843
[34] F. Sabourin, M. Brunet, Detailed formulation of the rotation‐free triangular element “S3” for general purpose shell analysis, Eng. Comput. 23 (2006) 469–502. https://doi.org/10.1108/02644400610671090