Press forming simulations: Is our characterization hitting the mark?
Wouter Grouve, Dennis Brands, Sebastiaan Wijskamp, Remko Akkerman
Abstract. The accuracy of press forming simulations relies on the quality of the characterization experiments used to determine material parameters. For reliable predictions, the characterization conditions, such as deformations and rates, must represent those encountered during forming. In this study, a forming simulation of a partial dome geometry was analyzed, extracting over 3 million data points to compare deformations and rates with conditions typically used for material characterization. While the findings are specific to the simulated geometry, they highlight opportunities to improve characterization methodologies. Key recommendations include focusing in-plane shear characterization on smaller angles and lower shear rates, extending bending characterization to larger curvatures and higher rates to capture wrinkle formation, and focusing ply-ply slippage measurements on small slip distances and low pressures.
Keywords
Thermoplastic Composites, Forming, Simulation, Characterization
Published online 5/7/2025, 10 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Wouter Grouve, Dennis Brands, Sebastiaan Wijskamp, Remko Akkerman, Press forming simulations: Is our characterization hitting the mark?, Materials Research Proceedings, Vol. 54, pp 487-496, 2025
DOI: https://doi.org/10.21741/9781644903599-53
The article was published as article 53 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] R. Akkerman, S.P. Haanappel, Thermoplastic composites manufacturing by thermoforming, in: Advances in Composites Manufacturing and Process Design, Elsevier, 2015: pp. 111-129 https://doi.org/10.1016/B978-1-78242-307-2.00006-3
[2] T.K. Slange, L. Warnet, W.J.B. Grouve, R. Akkerman, Consolidation quality and mechanical performance of stamp formed tailored blanks produced by rapid AFP, in: Aip Conference Proceedings, 2018 https://doi.org/10.1063/1.5034832
[3] D. Dörr, W. Brymerski, S. Ropers, D. Leutz, T. Joppich, L. Kärger, F. Henning, A benchmark study of finite element codes for forming simulation of thermoplastic UD-tapes, Procedia Cirp 66 (2017) 101-106 https://doi.org/10.1016/j.procir.2017.03.223
[4] S.P. Haanappel, R. Akkerman, Shear characterisation of uni-directional fibre reinforced thermoplastic melts by means of torsion, Composites Part A: Applied Science and Manufacturing 56 (2014) 8-26 https://doi.org/10.1016/j.compositesa.2013.09.007
[5] D. Zomer, S. Simaafrookhteh, K. Vanclooster, A. Dorigato, J. Ivens, Forming-behavior characterization of cross-ply carbon fiber/PA6 laminates using the bias-extension test, Composites Part A: Applied Science and Manufacturing 168 (2023) 107436 https://doi.org/10.1016/j.compositesa.2023.107436
[6] G.B. McGuinness, C.M. Ó Brádaigh, Characterisation of thermoplastic composite melts in rhombus-shear: the picture-frame experiment, Composites Part A: Applied Science and Manufacturing 29 (1998) 115-132 https://doi.org/10.1016/S1359-835X(97)00061-4
[7] D.B. Brands, S. Wijskamp, W.J.B. Grouve, R. Akkerman, In-plane shear characterization of unidirectional fiber reinforced thermoplastic tape using the bias extension method, Frontiers in Materials 9 (2022) https://doi.org/10.3389/fmats.2022.863952
[8] W.F. Stanley, P.J. Mallon, Intraply shear characterisation of a fibre reinforced thermoplastic composite, Composites Part A: Applied Science and Manufacturing 37 (2006) 939-948 https://doi.org/10.1016/j.compositesa.2005.03.017
[9] A. Margossian, S. Bel, R. Hinterhoelzl, Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a dynamic mechanical analysis system, Composites Part A: Applied Science and Manufacturing 77 (2015) 154-163 https://doi.org/10.1016/j.compositesa.2015.06.015
[10] U. Sachs, R. Akkerman, Viscoelastic bending model for continuous fiber-reinforced thermoplastic composites in melt, Composites Part A: Applied Science and Manufacturing 100 (2017) 333-341 https://doi.org/10.1016/j.compositesa.2017.05.032
[11] B. Liang, N. Hamila, M. Peillon, P. Boisse, Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations, Composites Part A: Applied Science and Manufacturing 67 (2014) 111-122 https://doi.org/10.1016/j.compositesa.2014.08.020
[12] U. Sachs, R. Akkerman, K. Fetfatsidis, E. Vidal-Sallé, J. Schumacher, G. Ziegmann, S. Allaoui, G. Hivet, B. Maron, K. Vanclooster, S.V. Lomov, Characterization of the dynamic friction of woven fabrics: Experimental methods and benchmark results, Composites Part A: Applied Science and Manufacturing 67 (2014) 289-298 https://doi.org/10.1016/j.compositesa.2014.08.026
[13] E.R. Pierik, W.J.B. Grouve, S. Wijskamp, R. Akkerman, Modeling the effect of temperature and pressure on the peak and steady-state ply-ply friction response for UD C/PAEK tapes, Composites Part A: Applied Science and Manufacturing 173 (2023) 107671 https://doi.org/10.1016/j.compositesa.2023.107671
[14] A. Kapshammer, D. Laresser, M.C. Miron, F. Baudach, Z. Major, Characterization and modeling of ply/tool and ply/ply slippage phenomena of unidirectional polycarbonate CF tapes, Polymers 15 (2023) 3520 https://doi.org/10.3390/polym15173520
[15] K. Vanclooster, Forming of multilayered fabric reinforced thermoplastic composites, PhD Thesis, KU Leuven, 2010
[16] B. Schäfer, N. Naouar, L. Kärger, Investigation of the friction behavior of uni- and bidirectional non-crimp fabrics, in: Material Forming: Esaform 2024, Materials Research Forum LLC, 2024 https://doi.org/10.21741/9781644903131-60
[17] AniForm. Engineering, Aniform core 5.1.1., (2024)
[18] R. ten Thije, R. Akkerman, J. Huétink, Large deformation simulation of anisotropic material using an updated lagrangian finite element method, Computer Methods in Applied Mechanics and Engineering 196 (2007) 3141-3150 https://doi.org/10.1016/j.cma.2007.02.010
[19] D.B, Brands, Forming simulations for unidirectional thermoplastic composites, Chapter 7, PhD Thesis University of Twente, 2025
[20] D.B. Brands, V. Vomáčko, W.J.B. Grouve, S. Wijskamp, R. Akkerman, Dataset with press forming results of unidirectional thermoplastic composite laminates including in-plane deformation data for validation of forming simulations, Data in Brief 53 (2024) 110099 https://doi.org/10.1016/j.dib.2024.110099
[21] D.B. Brands, S.P. Haanappel, W.J.B. Grouve, S. Wijskamp, R. Akkerman, Critical evaluation of torsion rheometry to characterize the anisotropic intraply shear resistance of unidirectional thermoplastic composites in melt. Accepted for publication in: Composites Part A (2025) https://doi.org/10.1016/j.compositesa.2024.108661