Investigation of process-geometry-microstructure-properties relationships in Inconel 718 single-bead deposits using wire based laser metal deposition
Mabrouk DERGUINI, Yannick BALCAEN, Morgane MOKHTARI, Joël ALEXIS
Abstract. Additive manufacturing techniques offer new possibilities for producing overly complex parts in small batches for rapid prototyping. This study focuses on the Laser Wire Metal Deposition (LMD-w) additive manufacturing of the nickel-based superalloy Inconel 718®. This study investigates the influence of process parameters on the geometry, microstructure, and mechanical properties of single-bead deposits produced via LMD-w. Forty single tracks were successfully printed following a partial Taguchi experimental design. This process shows a wide range of processability with excellent material health. Results demonstrate that the feed factor is the key parameter to control bead geometry. In contrast, secondary dendrite arm spacing (SDAS) is controlled by travel speed (higher travel speeds promoting finer dendritic structures). Additionally, a strong correlation is established between the increase of process energy input and the solidification rate, leading to a thinner microstructure and higher hardness.
Keywords
LMD-w, Laser-Wire, Inconel 718 Superalloy, Additive Manufacturing
Published online 5/7/2025, 10 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Mabrouk DERGUINI, Yannick BALCAEN, Morgane MOKHTARI, Joël ALEXIS, Investigation of process-geometry-microstructure-properties relationships in Inconel 718 single-bead deposits using wire based laser metal deposition, Materials Research Proceedings, Vol. 54, pp 39-48, 2025
DOI: https://doi.org/10.21741/9781644903599-5
The article was published as article 5 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] G. Rasiya, A. Shukla, et K. Saran, « Additive Manufacturing-A Review », Mater. Today Proc., vol. 47, p. 6896‑6901, janv. 2021. https://doi.org/10.1016/j.matpr.2021.05.181
[2] J. Li, M. R. Alkahari, N. Rosli, R. Hasan, M. N. Sudin, et F. Ramli, « Review of Wire Arc Additive Manufacturing for 3D Metal Printing », Int. J. Autom. Technol., vol. 13, p. 346‑353, mai 2019. https://doi.org/10.20965/ijat.2019.p0346
[3] I. John Solomon, P. Sevvel, J. Gunasekaran, et P. Tanushkumaar, « A review on additive manufacturing of alloys using laser metal deposition », Mater. Today Proc., vol. 64, p. 44‑50, janv. 2022. https://doi.org/10.1016/j.matpr.2022.03.510
[4] E. Hosseini et V. A. Popovich, « A review of mechanical properties of additively manufactured Inconel 718 », Addit. Manuf., vol. 30, p. 100877, déc. 2019. https://doi.org/10.1016/j.addma.2019.100877
[5] X. Xu, J. Ding, S. Ganguly, et S. Williams, « Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire + arc additive manufacture process », J. Mater. Process. Technol., vol. 265, p. 201‑209, mars 2019. https://doi.org/10.1016/j.jmatprotec.2018.10.023
[6] C. Kumara, A. R. Balachandramurthi, S. Goel, F. Hanning, et J. Moverare, « Toward a better understanding of phase transformations in additive manufacturing of Alloy 718 », Materialia, vol. 13, p. 100862, sept. 2020. https://doi.org/10.1016/j.mtla.2020.100862
[7] I. Cazic, « Coaxial laser wire additive manufacturing of Inconel 718 », phdthesis, Université de Lorraine, 2022. Consulté le: 10 février 2025. [En ligne]. Disponible sur: https://hal.univ-lorraine.fr/tel-03889613
[8] H.-J. Lee, H.-K. Kim, H.-U. Hong, et B.-S. Lee, « Influence of the focus offset on the defects, microstructure, and mechanical properties of an Inconel 718 superalloy fabricated by electron beam additive manufacturing », J. Alloys Compd., vol. 781, p. 842‑856, avr. 2019. https://doi.org/10.1016/j.jallcom.2018.12.070
[9] Y. N. Zhang, X. Cao, et P. Wanjara, « Microstructure and hardness of fiber laser deposited Inconel 718 using filler wire », Int. J. Adv. Manuf. Technol., vol. 69, no 9, p. 2569‑2581, déc. 2013. https://doi.org/10.1007/s00170-013-5171-y
[10] C. E. Seow, H. E. Coules, G. Wu, R. H. U. Khan, X. Xu, et S. Williams, « Wire + Arc Additively Manufactured Inconel 718: Effect of post-deposition heat treatments on microstructure and tensile properties », Mater. Des., vol. 183, p. 108157, déc. 2019. https://doi.org/10.1016/j.matdes.2019.108157
[11] J. Strößner, M. Terock, et U. Glatzel, « Mechanical and Microstructural Investigation of Nickel-Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM) », Adv. Eng. Mater., 2015. https://doi.org/10.1002/adem.201500158
[12] A. Strondl, M. Palm, J. Gnauk, et G. Frommeyer, « Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM) », Mater. Sci. Technol., 2011. https://doi.org/10.1179/026708309×12468927349451
[13] V. Cazaubon, A. Abi Akle, et X. Fischer, « A Parametric Study of Additive Manufacturing Process: TA6V Laser Wire Metal Deposition », in Advances on Mechanics, Design Engineering and Manufacturing III, L. Roucoules, M. Paredes, B. Eynard, P. Morer Camo, et C. Rizzi, Éd., Cham: Springer International Publishing, 2021, p. 15‑20. doi: 10.1007/978-3-030-70566-4_4
[14] H. El Cheikh, B. Courant, J.-Y. Hascoët, et R. Guillén, « Prediction and analytical description of the single laser track geometry in direct laser fabrication from process parameters and energy balance reasoning », J. Mater. Process. Technol., vol. 212, no 9, p. 1832‑1839, sept. 2012. https://doi.org/10.1016/j.jmatprotec.2012.03.016
[15] J. Xu et al., « Prediction of Geometric Dimensions of Deposited Layer Produced Using Laser-Arc Hybrid Additive Manufacturing », Micromachines, vol. 15, no 7, Art. no 7, juill. 2024. https://doi.org/10.3390/mi15070830
[16] T. Bergs, S. Kammann, G. Fraga, J. Riepe, et K. Arntz, « Experimental investigations on the influence of temperature for Laser Metal Deposition with lateral Inconel 718 wire feeding », Procedia CIRP, vol. 94, p. 29‑34, janv. 2020. https://doi.org/10.1016/j.procir.2020.09.007
[17] Special Metals Corporation, « Inconel-Alloy-718 ». 2007. [En ligne]. Disponible sur: https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-718.pdf
[18] J. Schindelin et al., « Fiji: an open-source platform for biological-image analysis », Nat. Methods, vol. 9, no 7, p. 676‑682, juill. 2012. https://doi.org/10.1038/nmeth.2019
[19] A. Ayed, G. Bras, H. Bernard, P. Michaud, Y. Balcaen, et J. Alexis, « Additive Manufacturing of Ti6Al4V with Wire Laser Metal Deposition Process », Mater. Sci. Forum, vol. 1016, p. 24‑29, 2021. https://doi.org/10.4028/www.scientific.net/MSF.1016.24
[20] N. Kwabena Adomako, N. Haghdadi, et S. Primig, « Electron and laser-based additive manufacturing of Ni-based superalloys: A review of heterogeneities in microstructure and mechanical properties », Mater. Des., vol. 223, p. 111245, nov. 2022. https://doi.org/10.1016/j.matdes.2022.111245
[21] A. Segerstark, J. Andersson, L.-E. Svensson, et O. Ojo, « Microstructural characterization of laser metal powder deposited Alloy 718 », Mater. Charact., vol. 142, p. 550‑559, août 2018. https://doi.org/10.1016/j.matchar.2018.06.020
[22] S. Sui, J. Chen, Z. Li, H. Li, X. Zhao, et H. Tan, « Investigation of dissolution behavior of laves phase in inconel 718 fabricated by laser directed energy deposition », Addit. Manuf., vol. 32, p. 101055, mars 2020. https://doi.org/10.1016/j.addma.2020.101055
[23] F. Liu, F. Lyu, F. Liu, X. Lin, et C. Huang, « Laves phase control of inconel 718 superalloy fabricated by laser direct energy deposition via δ aging and solution treatment », J. Mater. Res. Technol., vol. 9, no 5, p. 9753‑9765, sept. 2020. https://doi.org/10.1016/j.jmrt.2020.06.061
[24] S. Li et al., « Melt-pool motion, temperature variation and dendritic morphology of Inconel 718 during pulsed- and continuous-wave laser additive manufacturing: A comparative study », Mater. Des., vol. 119, p. 351‑360, avr. 2017. https://doi.org/10.1016/j.matdes.2017.01.065
[25] P. Nie, O. A. Ojo, et Z. Li, « Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy », Acta Mater., vol. 77, p. 85‑95, sept. 2014. https://doi.org/10.1016/j.actamat.2014.05.039
[26] W. Xiao et al., « Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys », Mater. Des., vol. 164, p. 107553, févr. 2019. https://doi.org/10.1016/j.matdes.2018.107553
[27] S. J. Wolff et al., « Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel », Addit. Manuf., vol. 27, p. 540‑551, mai 2019. https://doi.org/10.1016/j.addma.2019.03.019