Experimental investigation to reduce knit line effects in C-SMC

Experimental investigation to reduce knit line effects in C-SMC

Marcel Olma, Nils Meyer, Sergej Ilinzeer, Florian Wittemann, Constantin Krauß, Luise Kärger

Abstract. The integration of structural features, such as metallic inserts, into carbon fiber-reinforced sheet molding compound (C-SMC) components can be achieved through overmolding. The complexity of the structure and the presence of integrated metallic inserts, however, result in the formation of knit lines, which can lead to a reduction of structural performance. In a conventional SMC initial stack concept (Concept A), the initial stack is placed in the center of the mold. In this work, a new initial stack concept is investigated (Concept B), where the metallic inserts are wrapped in SMC. An experimental comparison of the two different insert concepts demonstrates how the position of the initial stacks of C-SMC can be optimized to enhance the structural performance.

Keywords
Sheet Molding Compound, Compression Molding, Knit Lines, Carbon Fiber, Tension Test

Published online 5/7/2025, 8 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Marcel Olma, Nils Meyer, Sergej Ilinzeer, Florian Wittemann, Constantin Krauß, Luise Kärger, Experimental investigation to reduce knit line effects in C-SMC, Materials Research Proceedings, Vol. 54, pp 355-362, 2025

DOI: https://doi.org/10.21741/9781644903599-39

The article was published as article 39 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] M. Fette, M. Hentschel, F. Köhler, J. Wulfsberg, and A. Herrmann, ‘Automated and Cost-efficient Production of Hybrid Sheet Moulding Compound Aircraft Components’, Procedia Manuf., vol. 6, pp. 132–139, 2016. https://doi.org/10.1016/j.promfg.2016.11.017.
[2] J. Buck, M. Mayer, and M. Fette, ‘Experimental Investigation of Inserts in SMC Foam Sandwich Structures for Aircraft Interior Applications’, in Production at the leading edge of technology, J. P. Wulfsberg, W. Hintze, and B.-A. Behrens, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, pp. 169–178. https://doi.org/10.1007/978-3-662-60417-5_17.
[3] V. Romanenko, M. Duhovic, D. Schommer, J. Hausmann, and J. Eschl, ‘Advanced process simulation of compression molded carbon fiber sheet molding compound (C-SMC) parts in automotive series applications’, Compos. Part Appl. Sci. Manuf., vol. 157, p. 106924, Jun. 2022. https://doi.org/10.1016/j.compositesa.2022.106924.
[4] S. V. Hoa, A. Di Maria, and D. Feldman, ‘Inserts for fastening sheet molding compounds’, Compos. Struct., vol. 8, no. 4, pp. 293–309, Jan. 1987. https://doi.org/10.1016/0263-8223(87)90021-3.
[5] P. S. Stelzer, U. Cakmak, L. Eisner, L. K. Doppelbauer, I. Kállai, G. Schweizer, H. K. Prammer, and Z. Major, ‘Experimental feasibility and environmental impacts of compression molded discontinuous carbon fiber composites with opportunities for circular economy’, Compos. Part B Eng., vol. 234, p. 109638, Apr. 2022. https://doi.org/10.1016/j.compositesb.2022.109638.
[6] J. J. Cranston and J. A. Reitz, ‘SMC Molding Techniques for Optimized Mechanical Properties in Structural Applications’, Polym.-Plast. Technol. Eng., vol. 15, no. 2, pp. 97–114, Jan. 1980. https://doi.org/10.1080/03602558008070007.
[7] L. M. Martulli, T. Creemers, E. Schöberl, N. Hale, M. Kerschbaum, S. V. Lomov, and Y. Swolfs, ‘A thick-walled sheet moulding compound automotive component: Manufacturing and performance’, Compos. Part Appl. Sci. Manuf., vol. 128, p. 105688, Jan. 2020. https://doi.org/10.1016/j.compositesa.2019.105688.
[8] N. Meyer, ‘Mesoscale simulation of the mold filling process of Sheet Molding Compound’, Doctoral Thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe, 2021. [Online]. Available: DOI: 10.5445/IR/1000138778
[9] N. Meyer, S. Ilinzeer, A. N. Hrymak, F. Henning, and L. Kärger, ‘Non-isothermal direct bundle simulation of SMC compression molding with a non-Newtonian compressible matrix’, J. Non-Newton. Fluid Mech., vol. 310, p. 104940, Dec. 2022. https://doi.org/10.1016/j.jnnfm.2022.104940.
[10] N. Meyer, L. Schöttl, L. Bretz, A. N. Hrymak, and L. Kärger, ‘Direct Bundle Simulation approach for the compression molding process of Sheet Molding Compound’, Compos. Part Appl. Sci. Manuf., vol. 132, p. 105809, Jan. 2020. https://doi.org/10.1016/j.compositesa.2020.105809.
[11] J. Haas, D. Aberle, A. Krüger, B. Beck, P. Eyerer, L. Kärger, and F. Henning, ‘Systematic Approach for Finite Element Analysis of Thermoplastic Impregnated 3D Filament Winding Structures—Advancements and Validation’, J. Compos. Sci., vol. 6, no. 3, p. 98, Mar. 2022. https://doi.org/10.3390/jcs6030098.