A comparative study of recycled PET, PETG, and virgin opaque PET for material extrusion
Domenyo Thierrie ASSEM, Tiphaine MÉRIAN, France CHABERT, Amevi TONGNE, Kodjo ATTIPOU, Adékunlé SALAMI
Abstract: Additive manufacturing using material extrusion (MEX) is a widely used technology that facilitates the creation of durable, lightweight, and stable components for various applications. Polyethylene terephtalate (PET), the most used plastic for bottles, cannot be printed due to inadequate rheological properties. This study aims to characterize recycled PET (PETr) to identify the optimal parameters and conditions necessary for this polymer to compete effectively with conventional thermoplastic filaments used in 3D printing. A comparative study is conducted between PETr, virgin opaque PET (PETo) to assess PETr’s performance against virgin opaque PET, and PETG (polyethylene terephthalate glycol), one of the most used materials in MEX. This work is part of a larger project whose ultimate goal is to modify PETr to achieve rheological properties similar to PETG. Materials undergo different transformations through extrusion, drying, and thermocompression, followed by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and rheological testing to assess thermal and mechanical properties. Initial DSC results indicate that PETr and PETo are semi-crystalline, melting at approximately 238°C-257°C, while PETG is amorphous. TGA results show a degradation temperature of 443°C – 451°C. Rheological tests reveal a Newtonian plateau whatever the temperature for PETG in the frequency range, whereas the viscosity of recycled PET and opaque PET exhibit a significant change in viscosity curves with temperature. Findings suggest that recycled PET is currently not a viable option, the polymer must be formulated to adjust it thermal and rheological properties to be considered as a competitive option for 3D printing applications, aligning environmental benefits with the mechanical standards of commercial filaments.
Keywords
Recycled PET, Thermal and Rheological Properties
Published online 5/7/2025, 10 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Domenyo Thierrie ASSEM, Tiphaine MÉRIAN, France CHABERT, Amevi TONGNE, Kodjo ATTIPOU, Adékunlé SALAMI, A comparative study of recycled PET, PETG, and virgin opaque PET for material extrusion, Materials Research Proceedings, Vol. 54, pp 2436-2445, 2025
DOI: https://doi.org/10.21741/9781644903599-263
The article was published as article 263 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Information on https://www.enviscope.com/les-plastiques-pet-un-marche-mondial-de-21-millions-de-tonnes/
[2] OECD, Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options. OECD, 2022. https://doi.org/10.1787/de747aef-en
[3] Information on https://cefic.org/a-solution-provider-for-sustainability/chemistrycan/driving-the-circular-economy/recycling-more-plastics/
[4] Information on https://ramenetessciences.wordpress.com/2017/05/10/le-polyterephtalate-dethylene-pet/
[5] I. Cusano, L. Campagnolo, M. Aurilia, S. Costanzo, et N. Grizzuti. Rheology of Recycled PET. Materials, 16 (9), 2023. https://doi.org/10.3390/ma16093358
[6] F. Awaja et D. Pavel. Recycling of PET. Eur. Polym. J, 41(7), 2005, pp.1453‑1477. https://doi.org/10.1016/j.eurpolymj.2005.02.005
[7] M. Kruse et M. H. Wagner. Rheological and molecular characterization of long-chain branched poly(ethylene terephthalate). Rheol. Acta, 56(11), 2017, pp.887‑904. https://doi.org/10.1007/s00397-017-1043-y
[8] F. n. Cavalcanti, E. t. Teófilo, M. s. Rabello, et S. m. l. Silva. Chain extension and degradation during reactive processing of PET in the presence of triphenyl phosphite. Polym. Eng. Sci, 47(12), 2007, pp. 2155‑2163. https://doi.org/10.1002/pen.20912
[9] M. Samykano, S. K. Selvamani, K. Kadirgama, W. K. Ngui, G. Kanagaraj, et K. Sudhakar,. Mechanical property of FDM printed ABS : influence of printing parameters. Int. J. Adv. Manuf. Technol, 102(9), 2019, pp. 2779‑2796. https://doi.org/10.1007/s00170-019-03313-0
[10] Information on https://www.mdpi.com/2073-4360/14/13/2564
[11] S. Bakrani Balani, F. Chabert, V. Nassiet, et A. Cantarel, (2019). Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Addit. Manuf, 25, 2019, pp.112‑121. https://doi.org/10.1016/j.addma.2018.10.012
[12] V. M. Bruère, A. Lion, J. Holtmannspötter, et M. Johlitz. The influence of printing parameters on the mechanical properties of 3D printed TPU-based elastomers. Prog. Addit. Manuf, 8(4), 2023, pp. 693‑701. https://doi.org/10.1007/s40964-023-00418-7
[13] T. Chen, G. Jiang, G. Li, Z. Wu, et J. Zhang. Poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) random copolymers: effect of copolymer composition and microstructure on thermal properties and crystallization behavior. RSC advance, (2015). https://doi.org/10.1039/C5RA09252C
[14] Information on https://www.smartmaterials3d.com/fr/petg-filament
[15] Information on https://www.campusplastics.com/campus/fr/datasheet/Arnite%C2%AE+A04+900/DSM/50/73406abe/US
[16] E. Barnard, J. J. R. Arias, et W. Thielemans. Chemolytic depolymerisation of PET: a review. Green Chem, 23(11), 2021, pp.3765‑3789. https://doi.org/10.1039/D1GC00887K
[17] Information on https://assets.thermofisher.com/TFS-Assets/MSD/Specification-Sheets/PS53132-process-11-parallel-twin-screw-extruder.pdf
[18] Information on https://www.tainstruments.com/pdf/literature/TN048.pdf
[19] Information on https://www.smartmaterials3d.com/fr/petg-filament
[20] C. A. Gracia-Fernández, S. Gómez-Barreiro, J. López-Beceiro, S. Naya, et R. Artiaga. New approach to the double melting peak of poly(l-lactic acid) observed by DSC. J. Mater. Res, 27(10), 2012, pp. 1379‑1382. https://doi.org/10.1557/jmr.2012.57
[21] M. Kattan, E. Dargent, J. Ledru, et J. Grenet. Strain-induced crystallization in uniaxially drawn PETG plates. J. Appl. Polym. Sci, 81(14), 2001, pp. 3405‑3412. https://doi.org/10.1002/app.1797