Feasibility of infusion processing for carbon fiber/vitrimeric epoxy composites

Feasibility of infusion processing for carbon fiber/vitrimeric epoxy composites

Barbara Palmieri, Fabrizia Cilento, Fausto Tucci, Antonio Viscusi, Alessia Serena Perna, Antonello Astarita, Michele Giordano, Eugenio Amendola, Alfonso Martone

Abstract. Carbon fiber-reinforced composites are highly valued for their exceptional mechanical properties and lightweight nature, but their environmental impact due to non-recyclable thermosetting matrices remains a critical challenge. This study explores the feasibility of integrating vitrimeric epoxy resins with carbon fibers using an infusion process to create sustainable and high-performance composites. Vitrimers, characterized by dynamic covalent bonds, enable recyclability, reprocessability, and repairability while maintaining structural integrity. In the present paper a vitrimer based on commercial epoxy system has been formulated. The vitrimer has been successfully employed for preparing carbon fiber reinforced polymer (CFRP) by liquid moulding technique, finally the vitrimer and the CFRP have been tested by dynamic mechanical analysis (DMA). The interface between epoxy vitrimers and carbon fibre was strong, resulting in a CFRP with a modulus of 11 GPa and a tan δ of 0.0089 at 35°C, consistent with structural composites. The reinforcement slightly reduced the mobility of the vitrimer.

Keywords
Vitrimer, Functional Composites, Infusion Process

Published online 5/7/2025, 7 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Barbara Palmieri, Fabrizia Cilento, Fausto Tucci, Antonio Viscusi, Alessia Serena Perna, Antonello Astarita, Michele Giordano, Eugenio Amendola, Alfonso Martone, Feasibility of infusion processing for carbon fiber/vitrimeric epoxy composites, Materials Research Proceedings, Vol. 54, pp 2419-2425, 2025

DOI: https://doi.org/10.21741/9781644903599-261

The article was published as article 261 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] Witik, R.A.; Teuscher, R.; Michaud, V.; Ludwig, C.; Månson, J.-A.E. Carbon Fibre Reinforced Composite Waste: An Environmental Assessment of Recycling, Energy Recovery and Landfilling. Compos. Part A Appl. Sci. Manuf. 2013, 49, 89–99
[2] Alabiso, W.; Schlögl, S. The Impact of Vitrimers on the Industry of the Future: Chemistry, Properties and Sustainable Forward-Looking Applications. Polymers (Basel). 2020, 12. https://doi.org/10.3390/POLYM12081660
[3] Capricho, J.C.; Fox, B.; Hameed, N. Multifunctionality in Epoxy Resins. Polym. Rev. 2020, 60, 1–41. https://doi.org/10.1080/15583724.2019.1650063
[4] Konuray, O.; García, A.; Morancho, J.M.; Fernández-Francos, X.; Serra, À.; Ferrando, F.; García-Alvarez, M.; Ramis, X. Hard Epoxy Thermosets Obtained via Two Sequential Epoxy-Amine Condensations. Eur. Polym. J. 2019, 116, 222–231. https://doi.org/10.1016/j.eurpolymj.2019.04.018
[5] Hammer, L.; Van Zee, N.J.; Nicolaÿ, R. Dually Crosslinked Polymer Networks Incorporating Dynamic Covalent Bonds. Polymers (Basel). 2021, 13, 1–34. https://doi.org/10.3390/polym13030396
[6] Dello Iacono, S.; Martone, A.; Pastore, A.; Filippone, G.; Acierno, D.; Zarrelli, M.; Giordano, M.; Amendola, E. Thermally Activated Multiple Self‐healing Diels‐alder Epoxy System. Polym. Eng. Sci. 2017, 57, 674–679. https://doi.org/10.1002/pen.24570
[7] Capelot, M.; Unterlass, M.M.; Tournilhac, F.; Leibler, L. Catalytic Control of the Vitrimer Glass Transition. ACS Macro Lett. 2012, 1, 789–792. https://doi.org/10.1021/MZ300239F
[8] Turkenburg, D.H.; Fischer, H.R. Diels-Alder Based, Thermo-Reversible Cross-Linked Epoxies for Use in Self-Healing Composites. Polymer (Guildf). 2015, 79, 187–194. https://doi.org/10.1016/j.polymer.2015.10.031
[9] Ruiz de Luzuriaga, A.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. Epoxy Resin with Exchangeable Disulfide Crosslinks to Obtain Reprocessable, Repairable and Recyclable Fiber-Reinforced Thermoset Composites. Mater. Horizons 2016, 3, 241–247. https://doi.org/10.1039/C6MH00029K
[10] Palmieri, B.; Cilento, F.; Amendola, E.; Valente, T.; Dello Iacono, S.; Giordano, M.; Martone, A. Influence of Catalyst Content and Epoxy/Carboxylate Ratio on Isothermal Creep of Epoxy Vitrimers. Polymers (Basel). 2023, 15, 3845. https://doi.org/10.3390/polym15183845
[11] Memon, H.; Wei, Y.; Zhu, C. Recyclable and Reformable Epoxy Resins Based on Dynamic Covalent Bonds – Present, Past, and Future. Polym. Test. 2022, 105, 107420. https://doi.org/10.1016/j.polymertesting.2021.107420
[12] Palmieri, B.; Cilento, F.; Amendola, E.; Valente, T.; Dello Iacono, S.; Giordano, M.; Martone, A. An Investigation of the Healing Efficiency of Epoxy Vitrimer Composites Based on Zn2+ Catalyst. Polymers (Basel). 2023, 15, 3611. https://doi.org/10.3390/polym15173611
[13] Taynton, P.; Ni, H.; Zhu, C.; Yu, K.; Loob, S.; Jin, Y.; Qi, H.J.; Zhang, W. Repairable Woven Carbon Fiber Composites with Full Recyclability Enabled by Malleable Polyimine Networks. Adv. Mater. 2016, 28, 2904–2909. https://doi.org/10.1002/ADMA.201505245