Determination of induced modulus of PET bottles via free-blowing of preforms
Thanh Tung Nguyen, Yun-Mei Luo, Luc Chevalier
Abstract Objective: The aim of this study is to measure the elastic properties induced by biaxial stretching at different temperatures. This evaluation of the moduli is based on geometric measurements taken during the free-blowing test. Method: Free-blowing experiments of PET preforms are conducted under controlled conditions of fixed temperatures (T°) and pressure (P) conditions. The evolution of the bubble’s diameter and height is monitored until maximum inflation. The pressure is then maintained during the cooling phase, and at a specific temperature, the pressure is released to measure the changes in geometry resulting from elastic recovery. Pressure tests conducted at room temperature on the blown “bottles” validate the measurements obtained during the free-blowing process and allow for the analysis of how the temperature at recovery affects the final induced modulus.
Keywords
Free Blowing, Cooling Phase, Elastic Recovery, Induced Modulus
Published online 5/7/2025, 9 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Thanh Tung Nguyen, Yun-Mei Luo, Luc Chevalier, Determination of induced modulus of PET bottles via free-blowing of preforms, Materials Research Proceedings, Vol. 54, pp 2311-2319, 2025
DOI: https://doi.org/10.21741/9781644903599-249
The article was published as article 249 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Schmidt F. M.,Agassant J. F. and Bellet M., “Experimental study and numerical simulation of the injection stretch/blow moulding process,” Polymer Engineering & Science, vol. 38(9), pp. 1399-1412, 1998 https://doi.org/10.1002/pen.10310
[2] Menary G. H.,Armstrong C. G. , Crawford R. J. & McEvoy J. P., “Modelling of poly(ethylene terephthalate) in injection stretch-blow moulding,” Plastics, Rubber and Composites, vol. 29:7, pp. 360-370, 2000 https://doi.org/10.1179/146580100101541166
[3] Luo Y-M., Chevalier L., Utheza F., “Modelling the heat during the injection stretch blowing moulding: Infrared heating and blowing modeling,” in Proceedings of the ASME 2012 11th Biennial Conference On Engineering Systems Design And Analysis, Nantes, France, 2012 https://doi.org/10.1115/ESDA2012-82725
[4] B. Demirel, F. Daver, “Experimental study of preform reheat temperature in two‐stage injection stretch blow molding,” Polymer Engineering & Science, pp. 53, 4, (868-873), 2012 https://doi.org/10.1002/pen.23333
[5] Luo Y-M., Chevalier L. ,Monteiro E. , Yan S. , Menary G., “Simulation of the Injection Stretch Blow Molding Process: An Anisotropic Visco‐Hyperelastic Model for Polyethylene Terephthalate Behavior,” Polymer Engineering and Science, Wiley Blackwell, vol. 60(4), pp. 823-831, 2020 https://doi.org/10.1002/pen.25341
[6] Billon N., Picard M., Gorlier E., “Stretch blow moulding of PET; structure development and constitutive model,” Int J Mater Form 7, p. 369-378, 2014 https://doi.org/10.1007/s12289-013-1131-1
[7] Nguyen, T.T., Luo, YM., Chevalier, L, “Numerical Simulation of Infrared Heating and Ventilation before Stretch Blow Molding of PET Bottles,” Int J Mater Form 16, p. 37 (2023), 2023 https://doi.org/10.1007/s12289-023-01763-2
[8] Nixon J, Menary G. H., Yan S., “Assessing the Stretch-blow Moulding FE Simulation of PET over a Large Process Window,” AIP Conference Proceedings, vol. 060008, p. 1896, 2017 https://doi.org/10.1063/1.5008071
[9] Chevalier L., Marco Y., Regnier G., “Modification des propriétés durant le soufflage des bouteilles plastiques en PET,” Mécanique & Industries, vol. 2(3), pp. 229-248, 2001 https://doi.org/10.1016/S1296-2139(01)01094-6
[10] Nguyen T.T., “Simulation du soufflage : prédiction, par la simulation numérique, de la géométrie et des propriétés mécaniques induites par le procédé de soufflage des bouteilles en PET,” Thesis – Gustave Eiffel University, France, 2022
[11] Attar H., “Comportement multiaxial des polymères en élongation : des évolutions de microstructure au comportement thermo-mécanique,” Thesis – Gustave Eiffel University, France, 2023
[12] J. Diani, F. Bedoui, G. Régnier, “On the relevance of the micromechanics approach for predicting the linear viscoelastic behavior of semi-crystalline poly(ethylene)terephtalates (PET),” Materials Science and Engineering: A, vol. 475, pp. 229-234, 2008 https://doi.org/10.1016/j.msea.2007.05.002
[13] Chevalier L., Luo Y-M., Nguyen T.T., Attar H., “Multiscale framework for estimation of induced elastic properties of Poly ethylene terephthalate after biaxial elongation,” Mechanics of Materials, p. 104962, 2024 https://doi.org/10.1016/j.mechmat.2024.104962
[14] Nguyen T.T., Luo Y-M., Chevalier L., Jacquet B., “Impact of the proportion between virgin and recycled polyethylene terephthalate (rPET) on induced microstructure and mechanical stiffness,” Polymer Engineering and Science, 2024 https://doi.org/10.2139/ssrn.4921659
[15] Luo Y-M., “Modélisation thermo-visco-hyperélastique du comportement du PET dans les conditions de vitesse et de température du procédé du soufflage,” Thèse de doctorant, Université Paris-Est, 2012
[16] Luo Y-M., Chevalier L., Utheza F., Monteiro E., “Numerical Simulation of the Thermodependant Visco-hyperelastic Behaviour of PET near the Glass Transition emperature: prediction of the self heating during biaxail tension test,” Polymer Eng. & Science, vol. 53, no. 12, pp. 2683-2695, 2013 https://doi.org/10.1002/pen.23522
[17] Luo, Y. M., Chevalier, L., Utheza, F. and Nicolas, X.., “Simplified Modeling of Convection and Radiation Heat Transfer during Infrared Heating of PET Sheets and Preforms,” International Polymer Processing, vol. 30, no. 5, pp. 554-565, 2015 https://doi.org/10.3139/217.3092
[18] Luo Y-M., Chevalier L., “On Induced Properties and Self Heating during Free Blowing of PET Preform,” International Polymer Processing, vol. 34(3), p. 330-338, 2019 https://doi.org/10.3139/217.3759
[19] Nguyen T.T., Luo Y-M.,Chevalier L., Lesueur F., “Stochastic simulation of top load test on poly(ethylene terephthalate) bottles: An experimental study on dispersion of elastic properties,” Journal of Applied Polymer Science, p. 50837, 2021 https://doi.org/10.1002/app.50837