Modeling and numerical simulation of a friction-compression process for recycling thermoplastics

Modeling and numerical simulation of a friction-compression process for recycling thermoplastics

Sami Meksassi, Matthieu Zinet, Claire Barrès, Shihe Xin, M’hamed Boutaous

Abstract. A numerical study of a friction-compression process test cell for recycling thermoplastics is presented. A finite element model simulates polymer melting under frictional heating and viscous dissipation in an annular domain. The study examines the evolution of key variables such as melt fraction, temperature distribution, velocity field, and viscosity during the process. This work provides a robust framework for understanding and optimizing this innovative recycling method.

Keywords
Thermoplastics, Recycling, Thermo-Rheological Modeling, Energy Balance

Published online 5/7/2025, 11 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Sami Meksassi, Matthieu Zinet, Claire Barrès, Shihe Xin, M’hamed Boutaous, Modeling and numerical simulation of a friction-compression process for recycling thermoplastics, Materials Research Proceedings, Vol. 54, pp 2291-2301, 2025

DOI: https://doi.org/10.21741/9781644903599-247

The article was published as article 247 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] OECD, Organization for Economic Co-operation and Development. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options, OECD Publishing, Paris (2022). https://www.oecd-ilibrary.org/environment/global-plastics-outlook_de747aef-en
[2] « Ocean Plastic Pollution an Overview: Data and Statistics », 2022. Information on https://oceanliteracy.unesco.org/plastic-pollution-ocean
[3] « Plastics Europe – the Facts 2022 ». Information on https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022
[4] « 41% of Plastic Packaging Waste Recycled in 2022 ». Information on https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20241024-3
[5] K. Ragaert, L. Delva, and K. Van Geem, « Mechanical and Chemical Recycling of Solid Plastic Waste », Waste Manag., vol. 69, p. 24‑58, 2017. https://doi.org/ 10.1016/j.wasman.2017.07.044
[6] B. D. Vogt, K. K. Stokes, and S. K. Kumar, « Why is Recycling of Postconsumer Plastics so Challenging? », ACS Appl. Polym. Mater., vol. 3, no 9, p. 4325‑4346, 2021. https://doi.org/ 10.1021/acsapm.1c00648
[7] W. M. Lai, D. Rubin, and E. Krempl, « CHAPTER 6 – Newtonian Viscous Fluid », in Introduction to Continuum Mechanics (Fourth Edition), 2010, p. 353‑410. https://doi.org/10.1016/B978-0-7506-8560-3.00006-2
[8] P. J. Carreau, « Rheological Equations from Molecular Network Theories », Trans. Soc. Rheol., vol. 16, no 1, p. 99‑127, 1972. https://doi.org/10.1122/1.549276
[9] K. Yasuda, R. C. Armstrong, and R. E. Cohen, « Shear Flow Properties of Concentrated Solutions of Linear and Star Branched Polystyrenes », Rheol. Acta, vol. 20, no 2, p. 163‑178, 1981. https://doi.org/10.1007/BF01513059
[10] J. D. Ferry, « Viscoelastic Properties of Polymers », Third edition. New York Chichester Brisbane Toronto Singapore: John Wiley & Sons, 1980.
[11] E. Koscher and R. Fulchiron, « Influence of Shear on Polypropylene Crystallization: Morphology Development and Kinetics », Polymer, vol. 43, no 25, p. 6931‑6942, 2002. https://doi.org/10.1016/S0032-3861(02)00628-6
[12] F. Christakopoulos, E. Troisi, and T. A. Tervoort, « Melting Kinetics of Nascent Poly(tetrafluoroethylene) Powder », Polymers, vol. 12, no 4, Art. no 4, 2020. https://doi.org/ 10.3390/polym12040791
[13] N. Sbirrazzuoli, « Determination of Pre-exponential Factors and of the Mathematical Functions f(α) or G(α) that Describe the Reaction Mechanism in a Model-Free Way », Thermochim. Acta, vol. 564, p. 59‑69, 2013. https://doi.org/10.1016/j.tca.2013.04.015
[14] A. Greco and A. Maffezzoli, « Statistical and Kinetic Approaches for Linear Low-Density Polyethylene Melting Modeling », J. Appl. Polym. Sci., vol. 89, no 2, p. 289‑295, 2003. https://doi.org/10.1002/app.12079
[15] J. Scoggin, R. S. Khan, H. Silva, and A. Gokirmak, « Modeling and Impacts of the Latent Heat of Phase Change and Specific Heat for Phase Change Materials », Appl. Phys. Lett., vol. 112, no 19, p. 193502, 2018. https://doi.org/10.1063/1.5025331
[16] Y. Yamaguchi, « Frottement des Plastiques », Techniques de l’Ingénieur, 1994. Information on https://www.techniques-ingenieur.fr/base-documentaire/mecanique-th7/materiaux-et-tribologie-42467210/frottement-des-plastiques-a3138
[17] C. G. Gogos and Z. Tadmor, « Principles of Polymer Processing », Second Edition, 2006.
[18] E. Gamache, « Etude de la Zone de Transport des Solides dans une Extrudeuse Monovis », 1997.