Friction stir welding (FSW) of 1200-O aluminum alloy: Temperature distribution modeling and metallurgical characterization
Geraldo T. Costa, Valdemar R. Duarte, Tarcísio G. Brito, Francisco W.C. Farias, Rafael Nunes3, Gustavo H.S.F.L. de Carvalho, Gianni Campatelli, Bruno S. Cota
Abstract. In recent years, the Friction Stir Welding (FSW) process has emerged as an efficient technique for joining metals. This work evaluates a thermomechanical model developed to analyze FSW parameters on 3 mm thick 1200-O aluminum sheets, using tools with conical and cylindrical pins. The research was divided into two stages: virtual and experimental. The virtual model simulated the welding parameters and predicted the thermal and mechanical behavior of the joints. In the experimental stage, welding was carried out on an adapted conventional milling machine, with real-time thermal monitoring. Tensile, bending, microhardness and microstructural analysis tests revealed weld seams with good visual quality and tensile efficiencies of 64.82% for the conical pin and 66.06% for the cylindrical pin.
Keywords
Friction Stir Welding, Computer Simulation, AA1200 Aluminum Alloy
Published online 5/7/2025, 10 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Geraldo T. Costa, Valdemar R. Duarte, Tarcísio G. Brito, Francisco W.C. Farias, Rafael Nunes3, Gustavo H.S.F.L. de Carvalho, Gianni Campatelli, Bruno S. Cota, Friction stir welding (FSW) of 1200-O aluminum alloy: Temperature distribution modeling and metallurgical characterization, Materials Research Proceedings, Vol. 54, pp 2037-2046, 2025
DOI: https://doi.org/10.21741/9781644903599-219
The article was published as article 219 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] J. P. Pires, B. S. Cota, A. Q. Bracarense, and B. A. Campolina, “Predição da Distribuição de Temperatura em Juntas da Liga de Alumínio 5052 H34 Soldadas pelo Processo Friction Stir Welding,” Soldagem & Inspeção, vol. 23, no. 2, pp. 247–263, Jun. 2018. https://doi.org/10.1590/0104-9224/si2302.11.
[2] S. Thamizhmanii, M. A. Sukor, and Sulaiman, “Solid State Friction Stir Welding (FSW) on
Similar and Dissimilar Metals,” Proceedings of the World Congress on Engineering, vol. 3, pp.
1743–1748, Jul. 2013.
[3] H. Schmidt, J. Hattel, and J. Wert, “An analytical model for the heat generation in friction stir welding,” Modelling and Simulation in Materials Science and Engineering, vol. 12, no. 1, pp. 143–157, Jan. 2004. https://doi.org/10.1088/0965-0393/12/1/013.
[4] J. P. Pires, B. S. Cota, A. Q. Bracarense, and B. A. Campolina, “Predição da Distribuição de Temperatura em Juntas da Liga de Alumínio 5052 H34 Soldadas pelo Processo Friction Stir Welding,” Soldagem & Inspeção, vol. 23, no. 2, pp. 247–263, Jun. 2018. https://doi.org/10.1590/0104-9224/si2302.11.
[5] J. B. Patel and H. S. Patil, “Simulation of Peak Temperature & Flow Stress during FSW of Aluminium Alloy AA6061 for Various Tool Pin Profiles,” International Journal of Materials Science and Engineering, 2014. https://doi.org/10.12720/ijmse.2.1.67-71.
[6] N. Z. Khan, A. N. Siddiquee, and Z. A. Khan, Friction Stir Welding. CRC Press, 2017. doi: 10.1201/9781315116815.
[7] D. M. Souza, H. C. Pinto, J. F. Santos, and R. S. Coelho, “Estudo das propriedades mecânicas, microestruturais e tensões residuais da liga de alumínio AA 5083-H111 soldadas por Friction Stir Welding – FSW,” Rio de Janeiro, 2015.
[8] D. O. Bokov et al., “Effect of Pin Shape on Thermal History of Aluminum-Steel Friction Stir Welded Joint: Computational Fluid Dynamic Modeling and Validation,” Materials, vol. 14, no. 24, p. 7883, Dec. 2021. https://doi.org/10.3390/ma14247883.
[9] N. Sibalic and M. Vukcevic, “Numerical Simulation for FSW Process at Welding Aluminium Alloy AA6082-T6,” Metals, vol. 9, no. 7, p. 747, Jul. 2019. https://doi.org/10.3390/met9070747.
[10] T. le Jolu et al., “Microstructural Characterization of Internal Welding Defects and Their Effect on the Tensile Behavior of FSW Joints of AA2198 Al-Cu-Li Alloy,” Metallurgical and Materials Transactions A, vol. 45, no. 12, pp. 5531–5544, Nov. 2014. https://doi.org/10.1007/s11661-014-2537-1.
[11] R. S. Mishra and M. W. Mahoney, Friction stir welding and processing. ASM International, 2007.
[12] N. Dialami, M. Cervera, M. Chiumenti, and A. Segatori, “Prediction of joint line remnant defect in Friction Stir Welding,” International Journal of Mechanical Sciences, vol. 151, pp. 61–69, 2019, Accessed: Aug. 09, 2024. [Online]. Available: https://upcommons.upc.edu/bitstream/handle/2117/132737/23536484.pdf;jsessionid=FF8BA78DCCEAFE0638EE12E9F90E440E?sequence=1
[13] D. T. Almeida, “Análise microestrutural e avaliação mecânica de juntas soldadas por fricção e mistura mecânica (FSW) da liga de alumínio 5182-O,” Porto Alegre, 2015.
[14] A. Davenport et al., “Corrosion of friction stir welds in high strength aluminium alloys,” 2003.