Integration of a digital twin for data-driven modeling of punch-bending processes using the asset administration shell
Henning PETERS, Andreas MAZUR, Ansgar TRÄCHTLER, Barbara HAMMER
Abstract. Within the punch-bending process semi-finished products of strip or wire material are formed and punched in several subsequent steps into a finished product like brackets, mounts, contacts or spring elements. In the context of those multi-stage straightening and bending processes, cross-stage and quantity-dependent effects significantly leads to undesired component deviations. To optimize the punch-bending process with regard to these component deviations and thus the waste rate, the concept of a hybrid data-driven model is presented. To automatically acquire and process this hybrid data while also enable the usage by multiple clients, a digital twin has to be developed. In this paper the communication infrastructure between the punch-bending system and the digital twin is presented, using the Asset Administration Shell as specification. This automated communication is validated using exemplary data from the punch-bending system.
Keywords
Punch-Bending, Digital Twin, Asset Administration Shell, Process Optimization
Published online 5/7/2025, 10 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Henning PETERS, Andreas MAZUR, Ansgar TRÄCHTLER, Barbara HAMMER, Integration of a digital twin for data-driven modeling of punch-bending processes using the asset administration shell, Materials Research Proceedings, Vol. 54, pp 1538-1547, 2025
DOI: https://doi.org/10.21741/9781644903599-166
The article was published as article 166 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] M. Paech, Advanced semi-automatic straightening technology, WJI, 41:7 (2008), 74-79.
[2] K. Richter, F. Reuther, R. Müller, D. Landgrebe, Investigating the influence of bending parameters on the springback behavior of ultra-high strength spring strips, Materials Science Forum, 918 (2018), 125–133. https://doi.org/10.4028/www.scientific.net/MSF.918.125
[3] M. Grüber, Konzepte zur Steuerung des Richtwalzprozesses bei variierenden Richtguteigenschaften, Dissertation, RWTH Aachen, Verlagshaus Mainz, Aachen, 2019.
[4] A. Amor, M. Rachik, H. Sfar, “Combination of finite-element and semi-analytical models for sheet metal leveling simulation,” Key Engineering Materials, 473 (2011), 182–189. https://doi.org/10.4028/www.scientific.net/KEM.473.182
[5] M. Gräler, R. Springer, C. Henke, A. Trächtler, W. Homberg, Assisted setup of forming processes: compensation of initial stochastic disturbances, Procedia Manufacturing, 25 (2018), 358-364. https://doi.org/10.1016/j.promfg.2018.06.104
[6] H. Peters, E. Djakow, T. Rostek, A. Mazur, A. Trächtler, W. Homberg, B. Hammer, Novel approach for data-driven modelling of multi-stage straightening and bending processes, Materials Research Proceedings, 41 (2024), 2289-2298. https://doi.org/10.21741/9781644903131-252
[7] T. Riedelsheimer, P. Lünnemann, S. Wehking und L. Dorfhuber, Digital Twin Readiness Assessment: Eine Studie zum digitalen Zwilling in der fertigenden Industrie, Fraunhofer Verlag, Berlin, 2020.
[8] W. Kritzinger et al., Digital Twin in manufacturing: A categorical literature review and classification, IFAC-PapersOnLine, 51 (2018), 1016-1022. https://doi.org/10.1016/
j.ifacol.2018.08.474
[9] B. Boss et al., Digital Twin and Asset Administration Shell Concepts and Application in the Industrial Internet and Industrie 4.0,2020.
[10] Plattform Industrie 4.0, The Structure of the Administration Shell: Trilateral Perspectives from France, Italy and Germany, 2018.
[11] Industrial Digital Twin Association, Specification of the Asset Administration
Shell – Part 1: Metamodel (2023). https://industrialdigitaltwin.org/content-hub/aasspecifications/
part1_metamodel
[12] C. Fimmers et al., Asset Administration Shells in Tool Lifecycle Monitoring, Procedia CIRP, 120 (2023), 1209-1214. https://doi.org/10.1016/j.procir.2023.09.150
[13] M. Jacoby et al., Open-Source Implementations of the Reactive Asset Administration Shell: A Survey, Sensors 2023, 23:11 (2023) 5229. https://doi.org/10.3390/s23115229
[14] L. Bathelt, M. Scurk, E. Djakow, C. Henke, A. Trächtler, Novel straightening-machine design with integrated force measurement for straightening of high-strength flat wire, Sensors, 23:22 (2023) 9091. https://doi.org/10.3390/s23229091
[15] Industrial Digital Twin Association, IDTA 02008-1-1 Time Series Data (2023). https://github.com/admin-shell-io/submodel-templates/tree/main/published/
Time%20Series%20Data/1/1