Finite element analysis for controlling heat affected zone, hardness and grain size evolution in plasma arc welding of AISI 304
Serafino CARUSO, Francesco BORDA, Luigino FILICE
Abstract. This study presents a finite element (FE) model to predict microstructural changes and hardness variations in the heat-affected zone (HAZ) during plasma arc welding (PAW) of AISI 304 austenitic stainless steel. PAW is an efficient welding technique offering better arc control, smaller HAZ and deeper penetration compared to conventional methods, making it particularly suitable for applications in solid expandable tube technology. A custom user subroutine was developed and implemented in SFTC DEFORM-3D™ software, enabling the simulation of grain growth and hardness changes in the HAZ. Experimental PAW trials were conducted, and the thermal field, grain size and hardness were measured to validate the numerical predictions. The numerical model demonstrated strong agreement with experimental data, successfully predicting the thermal phenomena and metallurgical changes during the PAW process validating the effectiveness of the implemented combined double three-dimensional Gaussian conical heat distribution model.
Keywords
Plasma Arc Welding, AISI 304, Solid Expansion Tube, Finite Element Modeling, Heat Source Model, Hardness, Grain Size, Heat Affected Zone
Published online 5/7/2025, 7 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Serafino CARUSO, Francesco BORDA, Luigino FILICE, Finite element analysis for controlling heat affected zone, hardness and grain size evolution in plasma arc welding of AISI 304, Materials Research Proceedings, Vol. 54, pp 1442-1448, 2025
DOI: https://doi.org/10.21741/9781644903599-156
The article was published as article 156 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] M. Radha Raman, T. Visnu, S. Rajesha, A Study of Tensile Strength of MIG and TIG Welded Dissimilar Joints of Mild Steel and Stainless Steel, IJASME. 3 (2014) 23-32. https://doi.org/10.14810/ijamse.2014.3203
[2] S. Manabendra, S. Dhami, Effect of TIG Welding Parameter of Welded Joint of Stainless Steel SS304 by TIG Welding, SSRN. (2020). http://dx.doi.org/10.2139/ssrn.3643709
[3] H. Vinoth Kumar, M. Balakrishnan, K. Gulanthaivel, R. Logeshwaran, R. Mohanraj, Investigation on effects of flux assisted GTAW welding process on mechanical, metallurgical characteristics of dissimilar metals SS 304 and SS 316 L, Mater. Today Proc. 33 (2020) 3191-3196. https://doi.org/10.1016/j.matpr.2020.04.143
[4] M. Samiuddin, J. Li, M. Taimoor, M.N. Siddiqui, S.U. Siddiqui, J. Xiong, Investigation on the process parameters of TIG-welded aluminum alloy through mechanical and microstructural characterization, Def. Technol. 17 (2021) 1234-1248. https://doi.org/10.1016/j.dt.2020.06.012
[5] G. Rotella, M. Sanguedolce, M.R. Saffioti, L. Filice, F. Testa, Strategies for Shaping of Different Ceramic Foams, Proc. Manuf. 47 (2020) 493-497. https://doi.org/10.1016/j.promfg.2020.04.345
[6] A. Del Prete, L. Filice, D. Umbrello, Numerical Simulation of Machining Nickel-Based Alloys. Proc. CIRP. 8 (2013) 540-545, https://doi:10.1016/j.procir.2013.06.147
[7] F. Borda, A.M.I. Cosma, L. Filice, Enabling Industry 4.0 Transformation in Calabria region: Framework, Machine Interconnection and ERP Synergy, Procedia Comput. Sci. 232 (2024) 1151-1163. https://doi.org/10.1016/j.procs.2024.01.113
[8] F. Borda, A.D. La Rosa, L. Filice, F. Gagliardi, Environmental comparison of opposing manufacturing strategies at changing of energy sources, EoL approaches and shape peculiarity for an automotive component, Adv. Mater. Process. Technol. (2024) 1-21. https://doi.org/10.1080/2374068X.2024.2432724
[9] M. Sanguedolce, G. Rotella, M.R. Saffioti, L. Filice, Burnishing of AM materials to obtain high performance part surfaces, JIEM. 15 (2022) 73-89. https://doi.org/10.3926/jiem.3608
[10] A.A. Deshpande, L. Xu, W. Sun, D.G. McCartney, T.H. Hyde, Finite-element-based parametric study on welding-induced distortion of TIG-welded stainless steel 304 sheets. J. Strain Anal. Eng. Des. 46 (2011) 267-279. doi:10.1177/0309324711398763
[11] S. Caruso, E. Sgambitterra, S. Rinaldi, A. Gallone, L. Viscido, L. Filice, D. Umbrello, Experimental comparison of the MIG, friction stir welding, cold metal transfer and hybrid laser-MIG processes for AA 6005-T6 aluminium alloy, AIP Conf. Proc. 1769 (2016) 100004. https://doi.org/10.1063/1.4963498
[12] M. Seyyedian, M. Haghpanah, M. Sedighi, Investigation of the effect of clamping on residual stresses and distortions in butt welded plates, Sci. Iranica Trans. B. Mech. Eng. 17 (2010) 387-394.
[13] D.R. Behera, P.S. Lin Prakash, P. Kundu, R.R. Kumar, S.V.S.N. Murty, S.K. Kar, S.K. Panda, Microstructure Characterization and Formability Assessment of Electron Beam Welded Nb-10Hf-1Ti (Wt.%) Refractory Alloy Sheets. Int. J. Refract. Met. Hard Mater. 125 (2024) 106912. https://doi.org/10.1016/j.ijrmhm.2024.106912
[14] J. Xie, A. Kar, Laser welding of thin sheet steel with surface oxidation, Weld J. 78 (1999).
[15] K.H. tseng, Y.C. Chen, Micro Plasma Arc Welding of AM 350 Precipitation Hardening Alloys, Appl. Mech. Mater. (2011) 121-126. https://doi.org/10.4028/www.scientific.net/AMM.121-126.2681
[16] X. Li, J. Liang, T. Shi, D. Yang, X. Chen, C. Zhang, Z. Liu, D. Liu, Q. Zhang, Tribological Behaviors of Vacuum Hot-Pressed Ceramic Composites with Enhanced Cyclic Oxidation and Corrosion Resistance. Ceram. Int. 46 (2020) 12911–12920. https://doi.org/10.1016/j.ceramint.2020.02.057
[17] S. Caruso, D. Umbrello, Numerical and experimental validation of gas metal arc welding on AISI 441 ferritic stainless steel through mechanical and microstructural analysis. Int. J. Adv. Manuf. Technol. 120 (2022) 7433–7444. https://doi.org/10.1007/s00170-022-09208-x
[18] F. Rubino, F. Tucci, S. Caruso, D. Umbrello, P. Carlone, An integrated numerical approach to simulate the filler deposition and the shape distortions in gas metal arc welding, CIRP J. Manuf. Sci.Technol. 45 (2023) 26-34, ISSN 1755-5817, https://doi.org/10.1016/j.cirpj.2023.05.010
[19] Y. Rong, G. Mi, J. Xu, Y. Huang, C. Wang, Laser penetration welding of ship steel EH36: a new heat source and application to predict residual stress considering martensite phase transformation. Mar. Struct. 61 (2018) 256–267. https://doi.org/10.1016/j.marstruc.2018.06.003
[20] Y.C. Huang, C.H. Su, S.K. Wu, C. Lin, A Study on the Hall–Petch Relationship and Grain Growth Kinetics in FCC-Structured High/Medium Entropy Alloys. Entropy. 21 (2019) 297. https://doi.org/10.3390/e21030297
[21] J. Moravec, I. Novakova, J. Sobotka, H. Neumann, Determination of Grain Growth Kinetics and Assessment of Welding Effect on Properties of S700MC Steel in the HAZ of Welded Joints. Metals 9 (2019) 707. https://doi.org/10.3390/met9060707
[22] R.M. German, Grain Growth in Austenitic Stainless Steels. Metallography 11(1978) 235–239, doi:10.1016/0026-0800(78)90043-5