Hybrid forming of metal-polymer gears: A feasibility assessment
Diego R. ALBA, Calvin EBERT, Philip REITINGER, Christian BONTEN, Mathias LIEWALD
Abstract. Achieving resource efficiency and lightweight design can be significantly improved by selecting materials specifically suited to the required loads and occurring conditions. Hybrid components, particularly metal-polymer composites, fulfil these needs by integrating materials with contrasting properties. For example, polymers offer low density and enhance damping and vibration reduction, while metals provide greater strength and stiffness. Despite their advantages, manufacturing these composite components is complex due to the differing characteristics of the materials. Forming processes hold promise for joining such dissimilar materials, however the current state-of-the-art for using polymers in tandem with cold metal forming is still limited. In this context, this research paper aims to assess a forming manufacturing process to produce a hybrid spur gear using polymer as an active medium for forming the metallic material. In preliminary phases, special attention was given to material characterization to optimize processing parameters, ensuring strong bond strength between the selected materials: aluminum alloy 6060-T66 and glass fiber-reinforced polypropylene. Based on the optimized parameter set and additional findings, this paper aims to evaluate the manufacturing of a spur gear through finite element method simulations, followed by experimental validation. The numerical simulation was carried out to assist in tooling design and analyze material flow. Subsequent validation experiments were conducted, with results correlated to the numerical findings by comparing the final geometry and force-displacement curves.
Keywords
Hybrid Forming, Polymeric-Metallic Components, Numerical Simulation
Published online 5/7/2025, 10 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Diego R. ALBA, Calvin EBERT, Philip REITINGER, Christian BONTEN, Mathias LIEWALD, Hybrid forming of metal-polymer gears: A feasibility assessment, Materials Research Proceedings, Vol. 54, pp 1354-1363, 2025
DOI: https://doi.org/10.21741/9781644903599-147
The article was published as article 147 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Information on https://sdgs.un.org/goals.
[2] C. Koblmiller, Leichtbau trifft… Nachhaltigkeit: Wie leicht ist nachhaltig?, Leichtbauwelt (2023) Information on https://www.leichtbauwelt.de/leichtbau-trifft-nachhaltigkeit-wie-leicht-ist-nachhaltig/.
[3] S. Reitschuster, C.M. Illenberger, T. Tobie, K. Stahl, Application of high performance polymer gears in light urban electric vehicle powertrains, Forsch Ingenieurwes.86 (2022) 683–91. https://doi.org/10.1007/s10010-022-00592-0
[4] C. Hasl, C. Illenberger, P. Oster, T. Tobie, K. Stahl, Potential of oil-lubricated cylindrical plastic gears, JAMDSM.12 (2018). https://doi.org/10.1299/jamdsm.2018jamdsm0016
[5] J.R. Davis, Gear Materials, Properties, and Manufacture, ASM International, Materials Park, OH – USA (2005).
[6] G. Meschut, M. Merklein, A. Brosius, D. Drummer, L. Fratini, U. Füssel, et al., Review on mechanical joining by plastic deformation, Journal of Advanced Joining Processes.5 (2022) 100113. https://doi.org/10.1016/j.jajp.2022.100113
[7] K. Mori, N. Bay, L. Fratini, F. Micari, A.E. Tekkaya, Joining by plastic deformation, CIRP Annals.62 (2013) 673–94. https://doi.org/10.1016/j.cirp.2013.05.004
[8] P. Groche, S. Wohletz, M. Brenneis, C. Pabst, F. Resch, Joining by forming—A review on joint mechanisms, applications and future trends, Journal of Materials Processing Technology.214 (2014) 1972–94. https://doi.org/10.1016/j.jmatprotec.2013.12.022
[9] M. Salamati, M. Soltanpour, A. Fazli, A. Zajkani, Processing and tooling considerations in joining by forming technologies; part A—mechanical joining, Int J Adv Manuf Technol.101 (2019) 261–315. https://doi.org/10.1007/s00170-018-2823-y
[10] R. Sankaranarayanan, N.R.J. Hynes, D. Li, A. Chrysanthou, S.T. Amancio-Filho, Review of Research on Friction Riveting of Polymer/Metal Light Weight Multi-material Structures, Trans Indian Inst Met.74 (2021) 2541–53. https://doi.org/10.1007/s12666-021-02356-w
[11] A. Galińska, Mechanical Joining of Fibre Reinforced Polymer Composites to Metals-A Review. Part I: Bolted Joining, Polymers (Basel).12 (2020). https://doi.org/10.3390/polym12102252
[12] F. Weber, J. Gebhard, R. Gitschel, S. Goyal, M. Kamaliev, S. Wernicke, A.E. Tekkaya, Joining by forming – A selective review, Journal of Advanced Joining Processes.3 (2021) 100054. https://doi.org/10.1016/j.jajp.2021.100054
[13] E. Schmachtenberg, M. Schuck, I. Kühnert, Montagespritzgießen: Urformen und Montieren in einem Prozess, Kunststoffe.04 (2007) 24–31.
[14] T. Müller, Methodik zur Entwicklung von Hybridstrukturen auf Basis faserverstärkter Thermoplaste : technisch-wissenschaftlicher Bericht [Doctoral Thesis], Erlangen, Nürnberg: Universität Erlangen-Nürnberg (2011).
[15] B. Rauscher, Formschlüssig verbundene Metall-Kunststoff-Hybridbauteile durch Integration von Blechumformungen und Spritzgießen [Doctoral Thesis], Dortmund, Germany: Technical University Dortmund (2011).
[16] M.M. Hussain, B. Rauscher, M. Trompeter, A.E. Tekkaya, Potential of Melted Polymer as Pressure Medium in Sheet Metal Forming, KEM.410-411 (2009) 493–501. https://doi.org/10.4028/www.scientific.net/KEM.410-411.493
[17] M.M. Hussain, M. Trompeter, J. Witulski, A.E. Tekkaya, An Experimental and Numerical Investigation on Polymer Melt Injected Sheet Metal Forming, Journal of Manufacturing Science and Engineering.134 (2012). https://doi.org/10.1115/1.4006117
[18] L.M. Alves, C.M. Silva, P.A. Martins, Joining of polymer and metal tubes by cold forming, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications.231 (2017) 505–15. https://doi.org/10.1177/1464420715605660
[19] I. Bragança, C. Silva, L.M. Alves, P. Martins, Lightweight joining of polymer and polymer-metal sheets by sheet-bulk forming, Journal of Cleaner Production.145 (2017) 98–104. https://doi.org/10.1016/j.jclepro.2017.01.049
[20] A. Hansen Gonçalves, Optimization of Forming and Material Parameters for a Polymer-Metal Bonding: A Study on the Design and Development of Hybrid Components [Masters Thesis], Stuttgart – Germany: University of Stuttgart (2024).
[21] B. Ferrer‐Fabón, J. Alms, M. Behr, C. Hopmann, High‐resolution numerical simulations of polymer injection molding: Analysis of mesh size and refinement, Proc Appl Math and Mech.23 (2023). https://doi.org/10.1002/pamm.202300245
[22] T. Altan, G. Ngaile, G. Shen, Cold and Hot Forging, ASM International (2005). https://doi.org/10.31399/asm.tb.chffa.9781627083003
[23] D. Alba, A. Weiß, M. Liewald, Preform optimization for manufacturing process of metal-polymer hybrid components through in tandem forming. In: 42th SENAFOR; Porto Alegre – Brazil (2023).