Effect of depth increment on damage in incremental sheet forming

Effect of depth increment on damage in incremental sheet forming

Shiori Gondo, Maximilian A. Wollenweber, Hamed Dardaei Joghan, Marlon Hahn, Yannis P. Korkolis, A. Erman Tekkaya

Abstract. Fatigue strength of a part formed by incremental sheet forming (ISF) can potentially be improved by reducing the extent of damage, void area fraction, through control of process parameters. This study aimed to clarify the damage induced by ISF and the effect of process parameters, particularly depth increment during ISF, on the void area fraction. Scanning electron microscopy observation and quantification, trained by a neural network model, found two results: the void area fraction on the tool side was not less than three times smaller than on the rear side of the formed parts, and the fraction decreased with the increase in depth increment.

Keywords
Incremental Sheet Forming, Dual-Phase Steel, Damage, Void Area Fraction

Published online 5/7/2025, 6 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Shiori Gondo, Maximilian A. Wollenweber, Hamed Dardaei Joghan, Marlon Hahn, Yannis P. Korkolis, A. Erman Tekkaya, Effect of depth increment on damage in incremental sheet forming, Materials Research Proceedings, Vol. 54, pp 1297-1302, 2025

DOI: https://doi.org/10.21741/9781644903599-141

The article was published as article 141 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] F. Maaß, M. Dobecki, M. Hahn, W. Reimers, A. E. Tekkaya, Setting component properties in incremental forming, Contributed Papers from Materials Science and Technology 2019 (MS&T19) (2019) 1176-1182. https://doi.org/10.7449/2019/MST_2019_1176_1182
[2] A. E. Tekkaya, N. B. Khalifa, O. Hering, R. Meya, S. Myslicki, F. Walther, Forming-induced damage and its effects on product properties, CIRP Annals Manuf. Technol.66 (2017) 281-284. http://dx.doi.org/10.1016/j.cirp.2017.04.113
[3] T. W. J. de Geus, R. H. J. Peerlings, M. G. D. Geers, Microstructural topology effects on the onset of ductile failure in multi-phase materials – A systematic computational approach, Int. J. Sold. Struc. 67-68 (2015) 326-339. http://dx.doi.org/10.1016/j.ijsolstr.2015.04.035
[4] R. Gitschel, A. Schulze, A.E. Tekkaya, Void nucleation, growth and closure in cold forging: an uncoupled modelling approach, Adv. Ind. Manuf. Eng. 7 (2023) 100124. https://doi.org/10.1016/j.aime.2023.100124
[5] P. Lennemann, J. Grodotyki, A. E. Tekkaya, Controlling the damage evolution in roll forming of a V-section by elastomer rollers, Proceedings of the 14th International Conference on the Technology of Plasticity (ICTP2023) – Current Trends in the Technology of Plasticity. ICTP 2023. Lecture Notes in Mechanical Engineering. Springer. (2024) 266-274. https://doi.org/10.1007/978-3-031-42093-1_26
[6] F. Pütz, F. Shen, M. Könemann, S. Münstermann, The differences of damage initiation and accumulation of DP steels: a numerical and experimental analysis, Int. J. Fract. 226 (2020) 1-15. https://doi.org/10.1007/s10704-020-00457-z
[7] M. A. Wollenweber, S. Medghalchi, L.R. Guimarães, N. Lohrey, C.F. Kusche, U. Kerzel, T. Al-Samman, S. Korte-Kerzel, On the damage behaviour in dual-phase DP800 steel deformed in single and combined strain paths, Mater. Des. 231 (2023) 112016. https://doi.org/10.1016/j.matdes.2023.112016
[8] Information on https://github.com/usnistgov/MIST
[9] C. Kusche, T. Reclik, M. Freund, T. Al-Samman, U. Kerzel, S. Korte-Kerzel, P. Pławiak, Large-area, high-resolution characterisation and classification of damage mechanisms in dual-phase steel using deep learning, PLoS one 14-5 (2019) e0216493. https://doi.org/10.1371/journal.pone.0216493
[10] S. Medghalchi, C.F. Kusche, E. Karimi, U. Kerzel, S. Korte-Kerzel, Damage analysis in dual-phase steel using deep learning: transfer from uniaxial to biaxial straining conditions by image data augmentation, JOM 72-12 (2020) 4420-4430. https://doi.org/10.1007/s11837-020-04404-0
[11] S. Medghalchi, E. Karimi, S.Lee, B. Berkels, U. Kerzel S. Korte-Kerzel, Three-dimensional characterisation of deformation-induced damage in dual phase steel using deep learning, Mater. Des. 232 (2023) 112108. https://doi.org/10.1016/j.matdes.2023.112108
[12] G. Ambrogio, I. Costantino, L. De Napoli, L. Filice, L. Fratini, M. Muzzupappa, Influence of some relevant process parameters on the dimensional accuracy in incremental forming: a numerical and experimental investigation, J. Meter. Technol. 153-154 (2004) 501-507. https://doi.org/10.1016/j.jmatprotec.2004.04.139
[13] D. M. Neto, J. M. P. Martins, M. C. Oliveira, L. F. Menezes, J. L. Alves, Evaluation of strain and stress states in the single point incremental forming process, Int. J. Adv. Manuf. Technol. 85 (2016) 521-534. https://doi.org/10.1007/s00170-015-7954-9