Effect of forming strategies on strain paths and local strain evolution in incremental sheet forming using digital image correlation
Raphaël LE FRANC, Ahmad AL KHATIB, Jean-François COULON, Jean-Benoît LE CAM, Gwenaël PICAUT
Abstract. Incremental sheet forming (ISF) is widely used for prototyping and small-batch production due to its flexibility and cost efficiency, particularly in the aeronautics and aerospace industries. Unlike traditional stamping, ISF uses a single hemispherical tool mounted on a robot or Computer Numerical Control (CNC) machine, which induces complex strain paths and higher formability. This necessitates a deeper understanding of deformation mechanisms to accurately define forming limits of this process. The aim of this paper is to study the strain path and local strain evolution in the ISF of AA2024-O aluminium alloy sheets and to investigate the influence of forming strategy on these strains. To achieve this, a novel method is employed by combining the wing stars test with the Digital Image Correlation (DIC) technique. The wing stars test, commonly used to characterize the Forming Limit Curve at Fracture (FLCF), is used to create a two-wing star (TWS) shape, inducing strain paths between equibiaxial strain and plane strain. DIC is utilized to capture surface strain on the sheet during the forming process, enhancing our understanding of deformation mechanisms. Strain paths and local strain evolution in different zones of the sheet during the tool’s pass are captured for three forming strategies. These strategies involve a cycle of four upward and downward tool passes, each with a fixed ΔZ per pass. The results demonstrate differences in strain paths in the zones near the wall of the TWS for the three strategies. Additionally, strain patterns for each strain component are identified in each zone of the TWS shape after the tool pass. The aim of this work is to understand the deformation mechanisms of the two-wingstar (TWS) geometry in order to reliably extract and control the evolution of deformation paths. This will enable the implementation of this test as a characterization method for incremental forming within industrial context.
Keywords
Incremental Sheet Forming, Digital Image Correlation, Strain Evolution, Strain Path, Forming Limit Curves at Fracture
Published online 5/7/2025, 10 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Raphaël LE FRANC, Ahmad AL KHATIB, Jean-François COULON, Jean-Benoît LE CAM, Gwenaël PICAUT, Effect of forming strategies on strain paths and local strain evolution in incremental sheet forming using digital image correlation, Materials Research Proceedings, Vol. 54, pp 1211-1220, 2025
DOI: https://doi.org/10.21741/9781644903599-132
The article was published as article 132 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Y. Combres, ‘Propriétés du titane et de ses alliages’, Étude Propr. Métaux, Jan. 2022. https://doi.org/10.51257/a-v1-m4780
[2] J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, and J. Allwood, ‘Asymmetric Single Point Incremental Forming of Sheet Metal’, CIRP Ann., vol. 54, no. 2, pp. 88–114, 2005. https://doi.org/10.1016/S0007-8506(07)60021-3
[3] Ajay and R. K. Mittal, Incremental sheet forming technologies: principles, merits, limitations, and applications, First edition. Boca Raton, FL: CRC Press, 2021.
[4] A. Kumar, V. Gulati, and P. Kumar, ‘Experimental Investigation of Forming Forces in Single Point Incremental Forming’, in Advances in Industrial and Production Engineering, K. Shanker, R. Shankar, and R. Sindhwani, Eds., Singapore: Springer, 2019, pp. 423–430. https://doi.org/10.1007/978-981-13-6412-9_41
[5] J. Jeswiet and D. Young, ‘Forming limit diagrams for single-point incremental forming of aluminium sheet’, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 219, no. 4, pp. 359–364, Apr. 2005. https://doi.org/10.1243/095440505X32210
[6] F. Micari, G. Ambrogio, and L. Filice, ‘Shape and dimensional accuracy in Single Point Incremental Forming: State of the art and future trends’, J. Mater. Process. Technol., vol. 191, no. 1–3, pp. 390–395, Aug. 2007. https://doi.org/10.1016/j.jmatprotec.2007.03.066
[7] T. J. Kim and D. Y. Yang, ‘Improvement of formability for the incremental sheet metal forming process’, Int. J. Mech. Sci., vol. 42, no. 7, pp. 1271–1286, Jul. 2000. https://doi.org/10.1016/S0020-7403(99)00047-8
[8] R. Malhotra, L. Xue, T. Belytschko, and J. Cao, ‘Mechanics of fracture in single point incremental forming’, J. Mater. Process. Technol., vol. 212, no. 7, pp. 1573–1590, Jul. 2012. https://doi.org/10.1016/j.jmatprotec.2012.02.021
[9] M. A. Davarpanah, S. Bansal, and R. Malhotra, ‘Influence of Single Point Incremental Forming on Mechanical Properties and Chain Orientation in Thermoplastic Polymers’, J. Manuf. Sci. Eng., vol. 139, no. 2, p. 021012, Feb. 2017. https://doi.org/10.1115/1.4034036
[10] A. Kumar, V. Gulati, P. Kumar, V. Singh, B. Kumar, and H. Singh, ‘Parametric effects on formability of AA2024-O aluminum alloy sheets in single point incremental forming’, J. Mater. Res. Technol., vol. 8, no. 1, pp. 1461–1469, Jan. 2019. https://doi.org/10.1016/j.jmrt.2018.11.001
[11] S. Matsubara, ‘A computer numerically controlled dieless incremental forming of a sheet metal’, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 215, no. 7, pp. 959–966, Jul. 2001. https://doi.org/10.1243/0954405011518863
[12] D. Y. Seong, M. Z. Haque, J. B. Kim, T. B. Stoughton, and J. W. Yoon, ‘Suppression of necking in incremental sheet forming’, Int. J. Solids Struct., vol. 51, no. 15–16, pp. 2840–2849, Aug. 2014. https://doi.org/10.1016/j.ijsolstr.2014.04.007
[13] M. B. Silva, M. Skjoedt, P. A. F. Martins, and N. Bay, ‘Revisiting the fundamentals of single point incremental forming by means of membrane analysis’, Int. J. Mach. Tools Manuf., vol. 48, no. 1, pp. 73–83, Jan. 2008. https://doi.org/10.1016/j.ijmachtools.2007.07.004
[14] M. Tisza, ‘General overview of sheet incremental forming’, J. Achiev. Mater. Manuf. Eng., vol. 55, no. 1, 2012.
[15] M. Harhash and H. Palkowski, ‘Incremental sheet forming of steel/polymer/steel sandwich composites’, J. Mater. Res. Technol., vol. 13, pp. 417–430, Jul. 2021. https://doi.org/10.1016/j.jmrt.2021.04.088
[16] A. K. Behera, R. A. de Sousa, G. Ingarao, and V. Oleksik, ‘Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015’, J. Manuf. Process., vol. 27, pp. 37–62, Jun. 2017. https://doi.org/10.1016/j.jmapro.2017.03.014
[17] M. A. Davarpanah and R. Malhotra, ‘Formability and failure modes in Single Point Incremental Forming of Metal-Polymer Laminates’, Procedia Manuf., vol. 26, pp. 343–348, Jan. 2018. https://doi.org/10.1016/j.promfg.2018.07.042
[18] M. Reggente et al., ‘Resin-free three-layered Ti/PMMA/Ti sandwich materials: Adhesion and formability study’, Compos. Struct., vol. 218, pp. 107–119, Jun. 2019. https://doi.org/10.1016/j.compstruct.2019.03.039
[19] S. Ai and H. Long, ‘A review on material fracture mechanism in incremental sheet forming’, Int. J. Adv. Manuf. Technol., vol. 104, no. 1, pp. 33–61, Sep. 2019. https://doi.org/10.1007/s00170-019-03682-6
[20] K. Isik, M. B. Silva, A. E. Tekkaya, and P. A. F. Martins, ‘Formability limits by fracture in sheet metal forming’, J. Mater. Process. Technol., vol. 214, no. 8, pp. 1557–1565, Aug. 2014. https://doi.org/10.1016/j.jmatprotec.2014.02.026
[21] M. B. Silva, K. Isik, A. E. Tekkaya, and P. A. F. Martins, ‘Fracture Loci in Sheet Metal Forming: A Review’, Acta Metall. Sin. Engl. Lett., vol. 28, no. 12, pp. 1415–1425, Dec. 2015. https://doi.org/10.1007/s40195-015-0341-6
[22] J. M. C. Soeiro, C. M. A. Silva, M. B. Silva, and P. A. F. Martins, ‘Revisiting the formability limits by fracture in sheet metal forming’, J. Mater. Process. Technol., vol. 217, pp. 184–192, Mar. 2015. https://doi.org/10.1016/j.jmatprotec.2014.11.009
[23] V.-C. Do, Q.-T. Pham, and Y.-S. Kim, ‘Identification of forming limit curve at fracture in incremental sheet forming’, Int. J. Adv. Manuf. Technol., vol. 92, no. 9, pp. 4445–4455, Oct. 2017. https://doi.org/10.1007/s00170-017-0441-8
[24] A. J. Martínez-Donaire, M. Borrego, D. Morales-Palma, G. Centeno, and C. Vallellano, ‘Analysis of the influence of stress triaxiality on formability of hole-flanging by single-stage SPIF’, Int. J. Mech. Sci., vol. 151, pp. 76–84, Feb. 2019. https://doi.org/10.1016/j.ijmecsci.2018.11.006
[25] S. Ai, B. Lu, J. Chen, H. Long, and H. Ou, ‘Evaluation of deformation stability and fracture mechanism in incremental sheet forming’, Int. J. Mech. Sci., vol. 124–125, pp. 174–184, May 2017. https://doi.org/10.1016/j.ijmecsci.2017.03.012
[26] F. Maqbool and M. Bambach, ‘Dominant deformation mechanisms in single point incremental forming (SPIF) and their effect on geometrical accuracy’, Int. J. Mech. Sci., vol. 136, pp. 279–292, Feb. 2018. https://doi.org/10.1016/j.ijmecsci.2017.12.053
[27] S. Darzi, B. L. Kinsey, and J. Ha, ‘Reforming toolpath effect on deformation mechanics in double-sided incremental forming’, Int. J. Mech. Sci., vol. 280, p. 109548, Oct. 2024. https://doi.org/10.1016/j.ijmecsci.2024.109548
[28] ‘EYCKENS Philip, SALAETS Rob, NELISSEN Gert, A parameter-free strain estimation method to prevent occurrence of splits in sheet forming of complex CAD designs, Materials Research Proceedings, Vol. 41, pp 1240-1246, 2024. https://doi.org/10.21741/9781644903131-138