SEM-EDX-based characterization of ductile damage in sheet metal forming of Al-Mg-Si alloy
Annemarie HEISER, Jonas WERNER, Martina MÜLLER, Thomas BERGS, Alexander SCHWEDT, Emad SCHARIFI, David BAILLY
Abstract. In sheet metal forming processes like deep drawing, tensile stress dominates, leading to positive triaxiality and ductile damage evolution. Understanding the correlation between load path and damage evolution enables control and minimization of damage during forming. This study investigates damage evolution during deep drawing at room temperature and deep drawing at solution heat treatment temperature with and without gas counter pressure of aluminum alloy AA6010. An SEM-EDX-based void analysis method, initially applied for particle detection, is adapted for analyzing damage in an Al-Mg-Si alloy. Voids are characterized via field emission SEM, using greyscale thresholding in BSE images for selective EDX-spectrum acquisition and subsequent classification. It is shown that cold-formed samples exhibit an overall higher level of damage compared to hot-formed samples. In cold forming damage is dominated by void nucleation and growth at fractured iron-rich inclusions, whereas in hot forming particle-matrix decohesion can be observed.
Keywords
Sheet Metal Forming, Damage Characterization, Aluminum
Published online 5/7/2025, 9 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Annemarie HEISER, Jonas WERNER, Martina MÜLLER, Thomas BERGS, Alexander SCHWEDT, Emad SCHARIFI, David BAILLY, SEM-EDX-based characterization of ductile damage in sheet metal forming of Al-Mg-Si alloy, Materials Research Proceedings, Vol. 54, pp 1158-1166, 2025
DOI: https://doi.org/10.21741/9781644903599-126
The article was published as article 126 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] M. Jain, J. Allin, M. J. Bull, Deep drawing characteristics of automotive aluminum alloys, Materials Science and Engineering: A 256, 1-2 (1998) 69–82. https://doi.org/10.1016/S0921-5093(98)00845-4
[2] J. R. Rice, D. M. Tracey, On the ductile enlargement of voids in triaxial stress fields∗, Journal of the Mechanics and Physics of Solids 17, 3 (1969) 201–217. https://doi.org/10.1016/0022-5096(69)90033-7
[3] G. Hirt, A. E. Tekkaya, T. Clausmeyer, J. Lohmar, Potential and status of damage controlled forming processes, Prod. Eng. Res. Devel. 14, 1 (2020) 1–4. https://doi.org/10.1007/s11740-019-00948-6
[4] F. Klocke, Sheet Metal Forming, in: F. Klocke, (Ed.) RWTHedition, Manufacturing processes, Springer, Berlin2013, pp. 293–405. https://doi.org/10.1007/978-3-642-36772-4_4
[5] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity 24, 6 (2008) 1071–1096. https://doi.org/10.1016/j.ijplas.2007.09.004
[6] C. C. Chu, A. Needleman, Void Nucleation Effects in Biaxially Stretched Sheets, Journal of Engineering Materials and Technology 102, 3 (1980) 249–256. https://doi.org/10.1115/1.3224807
[7] A. L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering Materials and Technology 99, 1 (1977) 2–15. https://doi.org/10.1115/1.3443401
[8] A. Needleman, V. Tvergaard, An analysis of ductile rupture in notched bars, Journal of the Mechanics and Physics of Solids 32, 6 (1984) 461–490. https://doi.org/10.1016/0022-5096(84)90031-0
[9] K. Danas, P. Ponte Castañeda, Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials, International Journal of Solids and Structures 49, 11-12 (2012) 1325–1342. https://doi.org/10.1016/j.ijsolstr.2012.02.006
[10] A. Kami, B. Dariani, S. A. Sadough Vanini, D.-S. Comsa, D. Banabic, Application of a GTN Damage Model to Predict the Fracture of Metallic Sheets Subjected to Deep-Drawing, Proceedings of the Romanian Academy – Series A: Mathematics, Physics, Technical Sciences, Information Science 152014 300–309.
[11] J. Lemaitre, A Continuous Damage Mechanics Model for Ductile Fracture, Journal of Engineering Materials and Technology 107, 1 (1985) 83–89. https://doi.org/10.1115/1.3225775
[12] S. Laboubi, O. Boussaid, M. Zaaf, W. Ghennai, Numerical investigation and experimental validation of Lemaitre ductile damage model for DC04 steel and application to deep drawing process, Int J Adv Manuf Technol 126, 5-6 (2023) 2283–2294. https://doi.org/10.1007/s00170-023-11244-0
[13] M. Müller, I. F. Weiser, T. Herrig, T. Bergs, Numerical Prediction of the Influence of Process Parameters and Process Set-Up on Damage Evolution during Deep Drawing of Rectangular Cups, Eng. Proc. 26, 6 (2022). Https://doi.org/10.3390/engproc2022026006
[14] P. E. Krajewski, J. G. Schroth, Overview of Quick Plastic Forming Technology, MSF 551-552 (2007) 3–12. https://doi.org/10.4028/www.scientific.net/MSF.551-552.3
[15] T. Teeuwen, N. K. Baru, D. Bailly, G. Hirt, Investigation on evolution of microstructure and mechanical properties of heat-treatable 6010-S aluminium alloy during gas-based hot sheet metal forming process, IOP Conf. Ser.: Mater. Sci. Eng. 1284, 1 (2023) 12005. https://doi.org/10.1088/1757-899X/1284/1/012005
[16] Z. P. Chen, P. F. Thomson, A study of post-form static and fatigue properties of superplastic 7475-SPF and 5083-SPF aluminium alloys, Journal of Materials Processing Technology 148, 2 (2004) 204–219. https://doi.org/10.1016/S0924-0136(03)00867-7
[17] A. F. Carunchio, D. A. Pereira, M. H. F. Batalha, H. B. Resende, A. S. Da Antunes, The Effectiveness of Back Pressure in Superplastic Blow Forming of Aluminum Alloy AA 5083 Performed at Very Favorable Conditions for Cavitation Growth, Mat. Res. 21, 5 (2018). Https://doi.org/10.1590/1980-5373-MR-2018-0261
[18] L. Babout, Y. Brechet, E. Maire, R. Fougères, On the competition between particle fracture and particle decohesion in metal matrix composites, Acta Materialia 52, 15 (2004) 4517–4525. https://doi.org/10.1016/j.actamat.2004.06.009
[19] D. Lassance, D. Fabergue, F. Delanny, T. Pardoen, Micromechanics of room and high temperature fracture in 6xxx Al alloys, Progress in Materials Science 52, 1 (2007) 62–129. https://doi.org/10.1016/j.pmatsci.2006.06.001
[20] C. C. Tasan, J. Hoefnagels, M. Geers, Identification of the continuum damage parameter: An experimental challenge in modeling damage evolution, Acta Materialia 60, 8 (2012) 3581–3589. https://doi.org/10.1016/j.actamat.2012.03.017
[21] O. Hering, A. Dunlap, A. E. Tekkaya, A. Aretz, A. Schwedt, Characterization of damage in forward rod extruded parts, Int J Mater Form 13, 6 (2020) 1003–1014. https://doi.org/10.1007/s12289-019-01525-z
[22] A. Dunlap, Elektronenmikroskopische Untersuchung der schädigungsrelevanten physikalischen Mechanismen in umgeformten Einsatzstahl 16MnCrS5, RWTH Aachen University (2023). Https://doi.org/10.18154/RWTH-2023-10841
[23] A. Heiser, J. Gerlach, D. Bailly, G. Hirt, Investigation of the Influence of Static Recrystallization on Void Evolution After Hot Compression Forming, in: T. Bauernhansl, A. Verl, M. Liewald, H.-C. Möhring, (Eds.) Lecture Notes in Production Engineering, Production at the Leading Edge of Technology, Springer Nature Switzerland, Cham2024, pp. 335–344. https://doi.org/10.1007/978-3-031-47394-4_33