Utilising the intrinsic characteristics of blind-hole nanoporous anodic alumina for blue energy
Khanh Nhien Vu, Cheryl Suwen Law, Abel Santos
Abstract. Osmotic energy generation is a promising renewable energy technology that converts the osmotic potential between two saline solutions of different concentration into electricity. Ion exchange membranes (IEMs) have gained attention as promising materials, but the high ionic resistance and low power output have prevented IEMs from achieving satisfactory performances for real-life applications. Nanoporous anodic alumina (NAA) is a promising platform material to develop IEMs with precisely tailored properties because of its intrinsic ionic current rectification (ICR) properties. NAA provides new venues to control the transport of ions through its barrier oxide layer, to generate current associated with the selective flow of ions across its nanochannels. This study explores the capability of blind-hole NAA membranes for osmotic energy generation. Featuring a surface area of 13.4 mm², NAA membranes demonstrate the ability to produce a power density output of approximately 2.8×10⁻⁴ W m⁻² under conditions of a 105-fold salinity ratio at pH 3 in a CaCl₂ electrolyte solution. This achievement is coupled with a notable efficiency rate of 7%.
Keywords
Nanoporous Anodic Alumina, Osmotic Energy Generation, Iontronic Membrane, Ionic Current Rectification, Barrier Oxide Layer
Published online 4/25/2025, 6 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Khanh Nhien Vu, Cheryl Suwen Law, Abel Santos, Utilising the intrinsic characteristics of blind-hole nanoporous anodic alumina for blue energy, Materials Research Proceedings, Vol. 53, pp 417-422, 2025
DOI: https://doi.org/10.21741/9781644903575-42
The article was published as article 42 of the book Decarbonization Technology
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] R. Vakulchuk, I. Overland, D. Scholten, Renewable Sustainable Energy Rev. 2020, 122, 109547. https://doi.org/10.1016/j.rser.2019.109547
[2] N. Y. Yip, M. Elimelech, Environ. Sci. Technol. 2012, 46, 5230, https://doi.org/10.1021/es300060m
[3] Y. D. Kim, S. Choi, A. Kim, W. Lee, ACS Nano 2020, 14, 13727 https://doi.org/10.1021/acsnano.0c05954
[4] M. Mibus, C. Jensen, X. Hu, C. Knospe, M. L. Reed, G. Zangari, Appl. Phys. Lett. 2014, 104, 244103 https://doi.org/10.1063/1.4882656
[5] H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier Science, 1st edn, 2004, vol. 9. https://doi.org/10.1016/S0927-5193(04)80032-9
[6] A. Campione, L. Gurreri, M. Ciofalo, G. Micale, A. Tamburini, A. Cipollina, Desalination 2018, 434, 121. https://doi.org/10.1016/j.desal.2017.12.044
[7] J. Cao, X. -P. Zhao, M. R. Younis, Z. -Q. Li, X. -H. Xia, C. Wang, Anal. Chem. 2017, 89, 10957 https://doi.org/10.1021/acs.analchem.7b02765
[8] B. E. Logan, M. Elimelech, Nature 2012, 488, 313 https://doi.org/10.1038/nature11477
[9] A. Santos, J. Mater. Chem. C, 2017, 5, 5581, c) M. Norek, J. Electrochem. Soc. 2022, 169, 123503. https://doi.org/10.1149/1945-7111/aca937
[10] J. Su, D. Ji, J. Tang, H. Li, Y. Feng, L. Cao, L. Jiang, W. Guo, Chin. J. Chem. 2018, 36, 417. https://doi.org/10.1002/cjoc.201800067
[11] G. Laucirica, A. G. Albesa, M. E. Toimil-Molares, C. Trautmann, W. A. Marmisollé, O. Azzaroni, Nano Energy 2020, 71, 104612 https://doi.org/10.1016/j.nanoen.2020.104612
[12] T. Xiao, J. Ma, Z. Liu, B. Lu, J. Jiang, Z. Nie, R. Luo, J. Jin, Q. Liu W. Li, J. Zhai, J. Mater. Chem. A 2020, 8, 11275 https://doi.org/10.1039/D0TA02162H
[13] C. -Y. Lin, S. -F. Chang, K. -T. Kuo, S. Garner, S. C. Pollard, S. -H. Chen, J. -P. Hsu, ACS Appl. Mater. Interfaces 2023, 15, 43094. https://doi.org/10.1021/acsami.3c05831