Effect of Cu loading to MCM-41 catalyst for propanediols production

Effect of Cu loading to MCM-41 catalyst for propanediols production

NUR AKILA SYAKIDA IDAYu Khairul Anuar, ANITA Ramli, AFEEFAH Fakhruldin

Abstract. The catalytic activity of Cu/MCM for glycerol hydrogenolysis to 1,2-propanediol (1,2-PDO) and 1,3-propanediol (1,3-PDO) was tested in a high-pressure batch reactor at 180-200 °C for 3 h under 10 bars of N2 with different solvent as in-situ hydrogen source. The commercial Al-MCM-41 was impregnated with 2.5, 5, 7.5 and 10 wt.% Cu using the incipient wetness impregnation method, dried at 100 °C for 24 h and calcined at 550 °C for 5 hours. The physicochemical properties of all catalysts were characterized using XRD, N2 adsorption-desorption isotherms, and H2-TPR. The synthesized Cu/MCM showed the presence of diffraction peaks, which could be assigned to a high-order two-dimensional hexagonal arrangement of MCM support at a low angle, while the CuO phase was detected at a wide angle diffraction peak. The surface area and pore volume showed a decreasing pattern as Cu content increased. The total hydrogen consumption of the Cu/MCM catalyst decreases at 2.5 wt.% of Cu content and gradually increases as the Cu content increases to 5, 7.5, and 10 wt.%. All catalysts were tested for glycerol hydrogenolysis without external hydrogen gas addition to determine the effect of different Cu loading on MCM support catalyst for 1,2-PDO and 1,3-PDO production.

Keywords
Glycerol Hydrogenolysis, Propanediols, In-situ Hydrogen, Cu/MCM Catalyst, High-pressure Batch Reactor

Published online 4/25/2025, 10 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: NUR AKILA SYAKIDA IDAYu Khairul Anuar, ANITA Ramli, AFEEFAH Fakhruldin, Effect of Cu loading to MCM-41 catalyst for propanediols production, Materials Research Proceedings, Vol. 53, pp 380-389, 2025

DOI: https://doi.org/10.21741/9781644903575-37

The article was published as article 37 of the book Decarbonization Technology

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A. M. Ruppert, K. Weinberg, R. Palkovits, Hydrogenolysis Goes Bio: from Carbohydrates and Sugar Alcohols to Platform Chemicals. Angewandte Chemie International Edition. 51 (2012) 2564–2601. https://doi.org/10.1002/anie.201105125
[2] Zulqarnain, M. H.M. Yusoff, M. Ayoub, N. Jusoh, A. Z. Abdullah, The Challenges of a Biodiesel Implementation Program in Malaysia. Processes. 8 (2020) 1244. https://doi.org/10.3390/pr8101244
[3] T. Numpilai, C. K. Cheng, A. Seubsai, K. Faungnawakij, J. Limtrakul, T. Witoon, Sustainable Utilization of Waste Glycerol for 1,3-propanediol Production over Pt/WOx/Al2O3 Catalysts: Effects of Catalyst Pore Sizes and Optimization of Synthesis Conditions. Environmental Pollution. 272 (2021) 116029. https://doi.org/10.1016/j.envpol.2020.116029
[4] Y. Liu, M. H. Wu, G. L. Rempel, F. T. T. Ng, Glycerol Hydrogenolysis to Produce 1,2-Propanediol in Absence of Molecular Hydrogen using a PD Promoted Cu/MgO/Al2O3 Catalyst. Catalysts. 11 (2021) 1299. https://doi.org/10.3390/catal11111299
[5] X. Liu, B. Yin, W. Zhang, X. Yu, Y. Du, S. Zhao, G. Zhang, M. Liu, H. Yan, M. Abbotsi-Dogbey, S. T. Al-Absi, S. Yeredil, C. Yang, J. Shen, W. Yan, X. Jin, Catalytic Transfer Hydrogenolysis of Glycerol over Heterogeneous Catalysts: A Short Review on Mechanistic Studies. The Chemical Record. 21 (2021) 1792–1810. https://doi.org/10.1002/tcr.202100037
[6] N. D. Kim, J. R. Park, D. S. Park, B. K. Kwak, J. Yi, Promoter Effect of Pd in CuCr2O4 Catalysts on the Hydrogenolysis of Glycerol to 1,2-propanediol, Green Chemistry. 14 (2012) 2638. https://doi.org/10.1039/c2gc00009a
[7] A. Corma, S. Iborra, A. Velty, Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews. 107 (2007) 2411–2502. https://doi.org/10.1021/cr050989d
[8] N. Azri, I. Ramli, U. I. Nda-Umar, M. I. Saiman, Y. H. Taufiq‐Yap, Effect of Different Supports for Copper as Catalysts on Glycerol Hydrogenolysis to 1,2-propanediol, Journal of King Saud University – Science. 33 (2021) 101417. https://doi.org/10.1016/j.jksus.2021.101417
[9] S. P. Samudrala, V. P. Kumar, M. L. Kantam, S. K. Bhargava, A. Srikanth, K. V. R. Chary, High Efficiency Conversion of Glycerol to 1,3-Propanediol using a Novel Platinum–Tungsten Catalyst Supported on SBA-15, Industrial & Engineering Chemistry Research. 54 (2015) 9104–9115. https://doi.org/10.1021/acs.iecr.5b01814
[10] B. Mallesham, P. Sudarsanam, B. V. S. Reddy, B. M. Reddy, Development of Cerium Promoted Copper–Magnesium Catalysts for Biomass Valorization: Selective Hydrogenolysis of Bioglycerol, Applied Catalysis B: Environmental. 18 (2016) 47–57. https://doi.org/10.1016/j.apcatb.2015.07.037
[11] B. Dou, Q. Hu, J. Li, S. Qiao, Z. Hao, Adsorption Performance of VOCs in Ordered Mesoporous Silicas with Different Pore Structures and Surface Chemistry, Journal of Hazardous Materials. 186 (2011) 1615–1624. https://doi.org/10.1016/j.jhazmat.2010.12.051
[12] V. G. Deshmane, R. Y. Abrokwah, D. Kuila, (2015). Synthesis of Stable Cu-MCM-41 Nanocatalysts for H2 Production with High Selectivity via Steam Reforming of Methanol, International Journal of Hydrogen Energy. 40 (2015) 10439–10452. https://doi.org/10.1016/j.ijhydene.2015.06.084
[13] S. Rahman, C. Santra, R. Kumar, J. Bahadur, A. Sultana, R. Schweins, D. Sen, S. Maity, S. Mazumdar, B. Chowdhury, Highly Active Ga Promoted Co-HMS-X Catalyst towards Styrene Epoxidation Reaction Using Molecular O2. Appl. Catal. A. 482 (2014) 61– 68. https://doi.org/10.1016/j.apcata.2014.05.024
[14] A. Jankowska, A. Chłopek, A. Kowalczyk, M. Rutkowska, M. Michalík, S. Liu, L. Chmielarz, (2020). Catalytic Performance of Spherical MCM-41 Modified with Copper and Iron as Catalysts of NH3-SCR Process, Molecules. 25 (2020) 5651. https://doi.org/10.3390/molecules25235651
[15] A. S. Al‐Fatesh, R. Kumar, S. O. Kasim, A. A. Ibrahim, A. H. Fakeeha, A. E. Abasaeed, H. Atia, U. Armbruster, C. Kreyenschulte, H. Lund, S. Bartling, Y. Mohammed, Y. A. Al-Baqmaa, M. S. Lanre, M. L. Chaudhary, F. S. Al‐Mubaddel, B. Chowdhury, (2021). Effect of Cerium Promoters on an MCM-41-Supported Nickel Catalyst in Dry Reforming of Methane, Industrial & Engineering Chemistry Research. 61 (2021) 164–174. https://doi.org/10.1021/acs.iecr.1c03163
[16] A. Kowalczyk, A. Święs, B. Gil, M. Rutkowska, Z. Piwowarska, A. Borcuch, M. Michalik, L. Chmielarz, Effective Catalysts for the Low-Temperature NH3-SCR Process Based on MCM-41 Modified with Copper by Template Ion-Exchange (TIE) Method. Appl. Catal. B Environ. 237 (2018) 927–937. https://doi.org/10.3390/molecules26061807
[17] G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and Mechanistic Aspects of the Selective Catalytic Reduction of NOx by Ammonia over Oxide Catalysts: A review, Appl. Catal. B Environ. 18 (1998) 1–36. https://doi.org/10.1016/s0926-3373(98)00040-x
[18] A. Ungureanu, B. Drăgoi, A. Chirieac, C. Ciotonea, S. Royer, D. Duprez, A. Mamede, E. Dumitriu, Composition-Dependent Morphostructural Properties of Ni–Cu Oxide Nanoparticles Confined within the Channels of Ordered Mesoporous SBA-15 Silica. ACS Applied Materials & Interfaces. 5 (2013) 3010–3025. https://doi.org/10.1021/am302733m
[19] N. Azri, I. Ramli, U. I. Nda-Umar, M. R. Shamsuddin, M. I. Saiman, Y. H. Taufiq-Yap, Copper-Dolomite as Effective Catalyst for Glycerol Hydrogenolysis to 1,2-Propanediol. J. Taiwan Inst. Chem. Eng. 112 (2020) 112, 34–5. https://doi.org/10.1016/j.jtice.2020.07.011
[20] L. Zheng, S. Xia, Z. Hou, Hydrogenolysis of Glycerol over Cu-Substituted Hydrocalumite Mediated Catalysts, Appl. Clay Sci. 118 (2015) 68–73. https://doi.org/10.1016/s0926-3373(98)00040-x
[21] S. Xia, L. Zheng, L. Wang, P. Chen, Z. Hou, Hydrogen-Free Synthesis of 1,2-Propanediol from Glycerol over Cu–Mg–Al Catalysts. RSC Advances. 3 (2013) 16569. https://doi.org/10.1016/j.clay.2015.09.002
[22] F. Chang, H. Yang, L. S. Roselin, W. Kuo, Ethanol Dehydrogenation over Copper Catalysts on Rice Husk Ash Prepared by Ion Exchange, Applied Catalysis A: General. 304 (2006) 30–39. https://doi.org/10.1016/j.apcata.2006.02.017
[23] G. Carotenuto, R. Tesser, M. Di Serio, E. Santacesaria, (2013). Kinetic Study of Ethanol Dehydrogenation to Ethyl Acetate Promoted by a Copper/Copper-Chromite Based Catalyst, Catalysis Today. 203 (2013) 202–210. https://doi.org/10.1016/j.cattod.2012.02.054
[24] F. Mauriello, A. Vinci, C. Espro, B. Gumina, M. G. Musolino, R. Pietropaolo, Hydrogenolysis vs. Aqueous Phase Reforming (APR) of Glycerol Promoted by a Heterogeneous Pd/Fe Catalyst, Catalysis Science & Technology. 5 (2015) 4466–4473. https://doi.org/10.1039/c5cy00656b
[25] R. Arumugam, B. Ali, R. Manigandan, C. T. Da, M. Nguyen‐Le, (2022). Hydrogenolysis of Glycerol to 1, 2-Propanediol on MgO/Ni3C Catalysts Fabricated by a Solid-State Thermal Synthesis, Molecular Catalysis. 525 (2022) 112358. https://doi.org/10.1016/j.mcat.2022.112358
[26] F. Cai, D. Pan, J. J. Ibrahim, J. Zhang, G. Xiao, (2018). Hydrogenolysis of Glycerol over Supported Bimetallic Ni/Cu Catalysts with and without External Hydrogen Addition in a Fixed-Bed Flow Reactor, Applied Catalysis A: General. 564 (2018) 172–182. https://doi.org/10.1016/j.apcata.2018.07.029