Development of carbon dots from lignocellulose oil palm wastes: A potential CO2 adsorbent
Aimi Solihah Zaul Kapri, Norhusna Mohamad Nor, Nur Ainaa Mohd Hasyim Cha, Mohamed Syazwan Osman, Abdul Rahman Mohamed
Abstract. This paper explores the utilisation of oil palm wastes, specifically palm kernel shells (PKS), mesocarp fibres (MF), and empty fruit bunches (EFB), into valuable carbon dots (CDs) through hydrothermal synthesis. Through comprehensive chemical techniques, including alkaline bleaching treatment, cellulose was successfully isolated from oil palm waste, yielding 59.28%, 57.64%, and 55.98% from EFB, MF, and PKS, respectively. Morphological analysis revealed separated fibrils with pits and holes, indicating successful impurity removal during delignification. Fourier-transform infrared spectroscopy (FTIR) confirmed the removal of wax, lignin, and hemicelluloses, while thermogravimetric analysis (TGA) indicated cellulose’s thermal stability at 360°C. Elemental analysis showed carbon as the predominant element. The novel aspect of this research lies in the subsequent hydrothermal synthesis of CDs from the extracted cellulose at 180°C for 24 hours, using a 1:1:3 weight ratio of cellulose, thiourea, and potassium hydroxide (KOH) as doping agents. Results indicated that MF-derived CDs exhibited the highest quantum yield (64.14%), followed by EFB (62.36%) and PKS (58.99%). Surface characterisation revealed functional groups enhancing CDs’ hydrophobicity, with nitrogen and sulfur doping significantly improving their CO2 adsorption properties. These findings highlight the potential of CDs derived from oil palm waste as a novel and efficient CO2 adsorbent, contributing to sustainable waste management and environmental efforts for CO2 capture applications. This research stands out by showcasing an innovative approach to waste valorisation, turning abundant oil palm wastes into high-value functional materials with environmental benefits, and demonstrating the practical applications and sustainability of CDs technology in CO2 capture.
Keywords
Carbon Dots, Empty Fruit Bunches, Mesocarp Fibre, Oil Palm Waste, Palm Kernel Shell
Published online 4/25/2025, 18 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Aimi Solihah Zaul Kapri, Norhusna Mohamad Nor, Nur Ainaa Mohd Hasyim Cha, Mohamed Syazwan Osman, Abdul Rahman Mohamed, Development of carbon dots from lignocellulose oil palm wastes: A potential CO2 adsorbent, Materials Research Proceedings, Vol. 53, pp 255-272, 2025
DOI: https://doi.org/10.21741/9781644903575-25
The article was published as article 25 of the book Decarbonization Technology
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] K.E. Anyaoha, R. Sakrabani, K. Patchigolla, A.M. Mouazen, Critical evaluation of oil palm fresh fruit bunch solid wastes as soil amendments: Prospects and challenges, Resour Conserv Recycl 136 (2018) 399–409. https://doi.org/10.1016/j.resconrec.2018.04.022
[2] N.H.S. Jafri, D.N. Jimat, F.M. Azmin, S. Sulaiman, Y.A. Nor, The potential of biomass waste in Malaysian palm oil industry: A case study of Boustead Plantation Berhad You may also like The potential of biomass waste in Malaysian palm oil industry: A case study of Boustead Plantation Berhad, (2021). https://doi.org/10.1088/1757-899X/1192/1/012028
[3] N.H.S. Jafri, D.N. Jimat, N.F.M. Azmin, S. Sulaiman, Y.A. Nor, The potential of biomass waste in Malaysian palm oil industry: A case study of Boustead Plantation Berhad, IOP Conf Ser Mater Sci Eng 1192 (2021) 012028. https://doi.org/10.1088/1757-899x/1192/1/012028
[4] M. Jorns, D. Pappas, A review of fluorescent carbon dots, their synthesis, physical and chemical characteristics, and applications, Nanomaterials 11 (2021). https://doi.org/10.3390/nano11061448
[5] L. Cui, X. Ren, M. Sun, H. Liu, L. Xia, Carbon dots: Synthesis, properties and applications, Nanomaterials 11 (2021). https://doi.org/10.3390/nano11123419
[6] K.W. Chu, S.L. Lee, C.J. Chang, L. Liu, Recent progress of carbon dot precursors and photocatalysis applications, Polymers (Basel) 11 (2019). https://doi.org/10.3390/polym11040689
[7] S. Punyasamudram, R. Prasad Puthalapattu, S. Gumma, N.Y. Sreedhar, P. V Nagendra Kumar, Synthesis and characterization of high fluorescent engineered carbon dots, (n.d.). https://doi.org/10.1016/j.matpr.2023.02.412
[8] M. Wu, J. Zhan, B. Geng, P. He, K. Wu, L. Wang, G. Xu, Z. Li, L. Yin, D. Pan, Scalable synthesis of organic-soluble carbon quantum dots: Superior optical properties in solvents, solids, and LEDs, Nanoscale 9 (2017) 13195–13202. https://doi.org/10.1039/c7nr04718e
[9] H.A.S. Tohamy, M. El-Sakhawy, S. Kamel, Eco-friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent, J Fluoresc 33 (2023) 423–435. https://doi.org/10.1007/s10895-022-03085-z
[10] J. Gan, L. Chen, Z. Chen, J. Zhang, W. Yu, C. Huang, Y. Wu, K. Zhang, Lignocellulosic Biomass-Based Carbon Dots: Synthesis Processes, Properties, and Applications, Small (2023). https://doi.org/10.1002/smll.202304066
[11] J. Zhang, H. Wang, Y. Xiao, J. Tang, C. Liang, F. Li, H. Dong, W. Xu, A Simple Approach for Synthesizing of Fluorescent Carbon Quantum Dots from Tofu Wastewater, Nanoscale Res Lett 12 (2017). https://doi.org/10.1186/S11671-017-2369-1
[12] S. Whitaker, C. De Silva, A.A.M. Noor, M.M.A. Karim, B. Gunasekaran, S.A. Gani, M.A. Cabrera, S.A. Ahmad, The green synthesis and characterisation of silver nanoparticles from Serratia spp Síntesis verde y caracterización de nanopartículas de plata de Serratia spp, Rev Mex Ing Quim 19 (2020) 1327–1339. https://doi.org/10.24275/rmiq/Bio1059
[13] O.G. Rojas-Valencia, M. Regules-Carrasco, J. Hernández-Fuentes, C.M.R.S. Germán, M. Estrada-Flores, E. Villagarcía-Chávez, Synthesis of blue emissive carbon quantum dots from Hibiscus Sabdariffa flower: Surface functionalization analysis by FT-IR spectroscopy, Materialia (Oxf) 19 (2021) 101182. https://doi.org/10.1016/J.MTLA.2021.101182
[14] A. Sharma, J. Das, Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine, Journal of Nanobiotechnology 2019 17:1 17 (2019) 1–24. https://doi.org/10.1186/S12951-019-0525-8
[15] S. Chahal, J.R. Macairan, N. Yousefi, N. Tufenkji, R. Naccache, Green synthesis of carbon dots and their applications, RSC Adv 11 (2021) 25354–25363. https://doi.org/10.1039/d1ra04718c
[16] K.W. Chu, S.L. Lee, C.J. Chang, L. Liu, Recent progress of carbon dot precursors and photocatalysis applications, Polymers (Basel) 11 (2019). https://doi.org/10.3390/polym11040689
[17] A.M. El-Shafey, Carbon dots: Discovery, structure, fluorescent properties, and applications, Green Processing and Synthesis 10 (2021) 134–156. https://doi.org/10.1515/gps-2021-0006
[18] X. Lin, M. Xiong, J. Zhang, C. He, X. Ma, H. Zhang, Y. Kuang, M. Yang, Q. Huang, Carbon dots based on natural resources: Synthesis and applications in sensors, Microchemical Journal 160 (2021) 105604. https://doi.org/10.1016/J.MICROC.2020.105604
[19] Y.N. Monday, J. Abdullah, N.A. Yusof, S.A. Rashid, R.H. Shueb, Facile Hydrothermal and Solvothermal Synthesis and Characterization of Nitrogen-Doped Carbon Dots from Palm Kernel Shell Precursor, Applied Sciences 2021, Vol. 11, Page 1630 11 (2021) 1630. https://doi.org/10.3390/APP11041630
[20] A. Su, D. Wang, X. Shu, Q. Zhong, Y. Chen, J. Liu, Y. Wang, Synthesis of Fluorescent Carbon Quantum Dots from Dried Lemon Peel for Determination of Carmine in Drinks, Chem Res Chin Univ 34 (2018) 164–168. https://doi.org/10.1007/S40242-018-7286-Z/METRICS
[21] H. Zhou, Y. Ren, Z. Li, W. He, Z. Li, Selective Detection of Fe3+ by Nitrogen–Sulfur-Doped Carbon Dots Using Thiourea and Citric Acid, Coatings 12 (2022). https://doi.org/10.3390/coatings12081042
[22] N.F. Sayakulu, S. Soloi, The Effect of Sodium Hydroxide (NaOH) Concentration on Oil Palm Empty Fruit Bunch (OPEFB) Cellulose Yield, J Phys Conf Ser 2314 (2022). https://doi.org/10.1088/1742-6596/2314/1/012017
[23] B.W. Chieng, S.H. Lee, N.A. Ibrahim, Y.Y. Then, Y.Y. Loo, Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber, Polymers (Basel) 9 (2017) 1–11. https://doi.org/10.3390/polym9080355
[24] H. Zhou, Y. Ren, Z. Li, W. He, Z. Li, Selective Detection of Fe3+ by Nitrogen–Sulfur-Doped Carbon Dots Using Thiourea and Citric Acid, Coatings 12 (2022). https://doi.org/10.3390/coatings12081042
[25] Z. Fu, M. Yao, X. Niu, F. Cui, Facile synthesis of highly luminescent co-doped carbon nanodots for rapid, sensitive, and label-free detection of Hg2+, Sens Actuators B Chem 226 (2016) 486–494. https://doi.org/10.1016/j.snb.2015.12.030
[26] J. Xiao, Y. Wang, T.C. Zhang, S. Yuan, N,S-containing polycondensate-derived porous carbon materials for superior CO2 adsorption and supercapacitor, Appl Surf Sci 562 (2021) 150128. https://doi.org/10.1016/j.apsusc.2021.150128
[27] R.A. Velapoldi, H.H. Tønnesen, Corrected Emission Spectra and Quantum Yields for a Series of Fluorescent Compounds in the Visible Spectral Region, J Fluoresc 14 (2004)
[28] Z. Li, Q. Wang, Z. Zhou, S. Zhao, S. Zhong, L. Xu, Y. Gao, X. Cui, Green synthesis of carbon quantum dots from corn stalk shell by hydrothermal approach in near-critical water and applications in detecting and bioimaging, Microchemical Journal 166 (2021). https://doi.org/10.1016/j.microc.2021.106250
[29] M.A.A. Sisak, R. Daik, S. Ramli, Characterization of cellulose extracted from oil palm empty fruit bunch, in: AIP Conf Proc, American Institute of Physics Inc., 2015. https://doi.org/10.1063/1.4931295
[30] Characteristics of Palm Kernel Shell and Palm Kernel Shell-Polymer Composites: A Review, (n.d.). https://doi.org/10.1088/1757-899X/1107/1/012090
[31] Y. Yee, N.A. Ibrahim, N. Zainuddin, B.W. Chieng, H. Ariffin, W.M. Zin, W. Yunus, Alkaline peroxide & composites, Bioresources 10 (2015) 1730–1746
[32] N.S. Izzaha, A.N.A. Yahaya, N.Z.M. Zuhudi, N.A. Khalil, M. Zulkifli, Extraction of cellulose from oil palm empty fruit bunch using eco-friendly solvents for preparation of transparent cellulose thin film, IOP Conf Ser Mater Sci Eng 1195 (2021) 012062. https://doi.org/10.1088/1757-899x/1195/1/012062
[33] J.F.Y. Fong, Y.H. Ng, S.M. Ng, Carbon dots as a new class of light emitters for biomedical diagnostics and therapeutic applications, Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach (2018) 227–295. https://doi.org/10.1016/B978-0-12-813691-1.00007-5
[34] Y. Lou, X. Hao, L. Liao, K. Zhang, S. Chen, Z. Li, J. Ou, A. Qin, Z. Li, Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications, Nano Select 2 (2021) 1117–1145. https://doi.org/10.1002/nano.202000232
[35] P. Wu, W. Li, Q. Wu, Y. Liu, S. Liu, Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3+ ions in an acidic environment, RSC Adv 7 (2017) 44144–44153. https://doi.org/10.1039/c7ra08400e
[36] Y. Wang, L. Yan, G. Ji, C. Wang, H. Gu, Q. Luo, Q. Chen, L. Chen, Y. Yang, C.Q. Ma, X. Liu, Synthesis of N,S-Doped Carbon Quantum Dots for Use in Organic Solar Cells as the ZnO Modifier to Eliminate the Light-Soaking Effect, ACS Appl Mater Interfaces 11 (2019) 2243–2253. https://doi.org/10.1021/acsami.8b17128
[37] W.L. Ang, C.A.L. Boon Mee, N.S. Sambudi, A.W. Mohammad, C.P. Leo, E. Mahmoudi, M. Ba-Abbad, A. Benamor, Microwave-assisted conversion of palm kernel shell biomass waste to photoluminescent carbon dots, Sci Rep 10 (2020). https://doi.org/10.1038/s41598-020-78322-1
[38] S. Miao, K. Liang, J. Zhu, B. Yang, D. Zhao, B. Kong, Hetero-atom-doped carbon dots: Doping strategies, properties and applications, Nano Today 33 (2020). https://doi.org/10.1016/j.nantod.2020.100879
[39] I.N. Mohammad, C.M. Ongkudon, M. Misson, Physicochemical properties and lignin degradation of thermal-pretreated oil palm empty fruit bunch, Energies (Basel) 13 (2020). https://doi.org/10.3390/en13225966
[40] B.W. Chieng, S.H. Lee, N.A. Ibrahim, Y.Y. Then, Y.Y. Loo, Isolation and Characterization of Cellulose Nanocrystals from Oil Palm Mesocarp Fiber, Polymers 2017, Vol. 9, Page 355 9 (2017) 355. https://doi.org/10.3390/POLYM9080355
[41] M.M. Al-Rajabi, & Teow, Y. Haan, Green Extraction Method of Cellulose Fibers from Oil Palm Empty Fruit Bunches, (2022). https://doi.org/10.17576/jkukm-2022-34(5)-12
[42] G.T. Chala, Y.P. Lim, S.A. Sulaiman, C.L. Liew, Thermogravimetric analysis of empty fruit bunch, in: MATEC Web of Conferences, EDP Sciences, 2018. https://doi.org/10.1051/matecconf/201822502002
[43] A.W. Noorshamsiana, J. Nor Faizah, H. Kamarudin, A.O. Nur Eliyanti, I. Fatiha, A.A. Astimar, Extraction and characterisation of cellulose from the residue of oil palm empty fruit bunch-xylan extraction, J Oil Palm Res 32 (2020) 610–620. https://doi.org/10.21894/jopr.2020.0052
[44] S.R.A.M. Rasli, I. Ahmad, A.M. Lazim, A. Hamzah, Extraction and characterizations of cellulose from agriculture residue, Malaysian Journal of Analytical Sciences 21 (2017) 1065–1073. https://doi.org/10.17576/mjas-2017-2105-08
[45] B. Yimlamai, W. Choorit, Y. Chisti, P. Prasertsan, Cellulose from oil palm empty fruit bunch fiber and its conversion to carboxymethylcellulose, Journal of Chemical Technology and Biotechnology 96 (2021) 1656–1666. https://doi.org/10.1002/jctb.6689
[46] A.S. Kamarol Zaman, T.L. Tan, Y. A/P Chowmasundaram, N. Jamaludin, A.R. Sadrolhosseini, U. Rashid, S.A. Rashid, Properties and molecular structure of carbon quantum dots derived from empty fruit bunch biochar using a facile microwave-assisted method for the detection of Cu2+ ions, Opt Mater (Amst) 112 (2021) 110801. https://doi.org/10.1016/J.OPTMAT.2021.110801
[47] N. Jamaludin, T.L. Tan, A.S.K. Zaman, A.R. Sadrolhosseini, S.A. Rashid, Acid-Free Hydrothermal-Extraction and Molecular Structure of Carbon Quantum Dots Derived from Empty Fruit Bunch Biochar, Materials 2020, Vol. 13, Page 3356 13 (2020) 3356. https://doi.org/10.3390/MA13153356
[48] B. Dziejarski, J. Serafin, K. Andersson, R. Krzyżyńska, CO2 capture materials: a review of current trends and future challenges, Materials Today Sustainability 24 (2023) 100483. https://doi.org/10.1016/J.MTSUST.2023.100483
[49] S. Mahajan, M. Lahtinen, Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures, J Environ Chem Eng 10 (2022) 108930. https://doi.org/10.1016/J.JECE.2022.108930
[50] J. Saleem, U. Bin Shahid, M. Hijab, H. Mackey, G. McKay, Production and applications of activated carbons as adsorbents from olive stones, Biomass Conversion and Biorefinery 2019 9:4 9 (2019) 775–802. https://doi.org/10.1007/S13399-019-00473-7
[51] S. Acevedo, L. Giraldo, J.C. Moreno-Piraján, Adsorption of CO2 on Activated Carbons Prepared by Chemical Activation with Cupric Nitrate, ACS Omega 5 (2020) 10423–10432. https://doi.org/10.1021/ACSOMEGA.0C00342/ASSET/IMAGES/LARGE/AO0C00342_0005.JPEG
[52] J. May, L. Thoe, N. Surugau, H. Lye, H. Chong, Application of Oil Palm Empty Fruit Bunch as Adsorbent: A Review, 2019. http://tost.unise.org/
[53] S. Giraldo, A.P. Ramirez, E. Flórez, N.Y. Acelas, Adsorbent materials obtained from palm waste and its potential use for contaminants removal from aqueous solutions, in: J Phys Conf Ser, Institute of Physics Publishing, 2019. https://doi.org/10.1088/1742-6596/1386/1/012036
[54] Current Research Paper Carbon dioxide capture by adsorption using sulfur doped carbon material, (n.d.)
[55] R. Busquets, S. Reljic, M. Martinez-Escandell, J. Silvestre-Albero, Effect of Porosity and Surface Chemistry on CO2 and CH4 Adsorption in S-Doped and S-/O-co-Doped Porous Carbons, C 2022, Vol. 8, Page 41 8 (2022) 41. https://doi.org/10.3390/C8030041
[56] H. Khurshid, M.R.U. Mustafa, M.H. Isa, Modified Activated Carbon Synthesized from Oil Palm Leaves Waste as a Novel Green Adsorbent for Chemical Oxygen Demand in Produced Water, Sustainability (Switzerland) 14 (2022). https://doi.org/10.3390/su14041986