Enhanced CO2 adsorption kinetics with hierarchical zeolite 5A
SYED ABDUL Moiz Hashmi, NG Xiuxin, CHUAH Chong Yang, JOHARI Khairiraihana, POON Wai Ching
Abstract. In this work, hierarchical zeolite LTA (H-4A and H-5A) was synthesized using dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride surfactant and characterized through various analyses. N2 physisorption analysis shows that H-4A and H-5A exhibited a hierarchical structure with coexisting microporous and mesoporous domains. The existence of mesoporosity within the crystals is accountable for the decreased diffraction peaks as observed in the XRD analysis of H-4A and H-5A. This observation is also consistent with the FESEM images, where H-4A and H-5A with hierarchical structures display as spherical particles while bulk zeolite LTA (B-4A and B-5A) showcase as well-defined and uniform cubic shape crystals. Investigation of CO2 and N2 adsorption has shown that the synthesized zeolites displayed a significant CO2 adsorption capacity compared to N2. Furthermore, by measuring the CO2 fractional uptake, it is concluded that H-5A improves CO2 adsorption kinetics significantly as compared to B-5A. This attractive characteristic is expected to be able to be applied effectively in the carbon capture and storage process as an improved overall processing rate of adsorbents under repetitive adsorption- desorption cycling can be achieved.
Keywords
Zeolites, Mesoporous Materials, Carbon Capture, Hierarchical Zeolite
Published online 4/25/2025, 9 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: SYED ABDUL Moiz Hashmi, NG Xiuxin, CHUAH Chong Yang, JOHARI Khairiraihana, POON Wai Ching, Enhanced CO2 adsorption kinetics with hierarchical zeolite 5A, Materials Research Proceedings, Vol. 53, pp 164-173, 2025
DOI: https://doi.org/10.21741/9781644903575-16
The article was published as article 16 of the book Decarbonization Technology
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Faust, S. D.; Aly, O. M., Adsorption processes for water treatment. Elsevier: 2013.
[2] Indarto, A.; Putra, I.; Noersalim, S.; Hartanto, Y.; Handojo, L. In Zeolites as adsorbent materials for decolorization of crude terpineol, IOP Conference Series: Materials Science and Engineering, IOP Publishing: 2019; p 012021. https://doi.org/10.1088/1757-899X/599/1/012021
[3] Chuah, C. Y.; Goh, K.; Yang, Y.; Gong, H.; Li, W.; Karahan, H. E.; Guiver, M. D.; Wang, R.; Bae, T.-H., Harnessing filler materials for enhancing biogas separation membranes. Chem. Rev. 2018, 118 (18), 8655-8769. https://doi.org/10.1021/acs.chemrev.8b00091
[4] Sadeghbeigi, R., Fluid catalytic cracking handbook: An expert guide to the practical operation, design, and optimization of FCC units. Butterworth-Heinemann: 2020.
[5] Bae, T.-H.; Hudson, M. R.; Mason, J. A.; Queen, W. L.; Dutton, J. J.; Sumida, K.; Micklash, K. J.; Kaye, S. S.; Brown, C. M.; Long, J. R., Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ. Sci. 2013, 6 (1), 128-138. https://doi.org/10.1039/C2EE23337A
[6] Nguyen, T. H.; Kim, S.; Yoon, M.; Bae, T. H., Hierarchical zeolites with amine‐functionalized mesoporous domains for carbon dioxide capture. ChemSusChem 2016, 9 (5), 455-461. https://doi.org/10.1002/cssc.201600004
[7] Li, W.; Goh, K.; Chuah, C. Y.; Bae, T.-H., Mixed-matrix carbon molecular sieve membranes using hierarchical zeolite: A simple approach towards high CO2 permeability enhancements. Journal of membrane science 2019, 588, 117220. https://doi.org/10.1016/j.memsci.2019.117220
[8] Cho, K.; Cho, H. S.; de Menorval, L.-C.; Ryoo, R., Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chem. Mater. 2009, 21 (23), 5664-5673. https://doi.org/10.1021/cm902861y
[9] Mousavi, H.; Darian, J. T.; Mokhtarani, B., Enhanced nitrogen adsorption capacity on Ca2+ ion-exchanged hierarchical X zeolite. Sep. Purif. Technol. 2021, 264, 118442. https://doi.org/10.1016/j.seppur.2021.118442
[10] Panda, D.; Kumar, E. A.; Singh, S. K., Introducing mesoporosity in zeolite 4A bodies for Rapid CO2 capture. J. CO2 Util. 2020, 40, 101223. https://doi.org/10.1016/j.jcou.2020.101223
[11] Nguyen, T. H.; Gong, H.; Lee, S. S.; Bae, T. H., Amine‐Appended Hierarchical Ca‐A Zeolite for Enhancing CO2/CH4 Selectivity of Mixed‐Matrix Membranes. ChemPhysChem 2016, 17 (20), 3165-3169. https://doi.org/10.1002/cphc.201600561
[12] Tounsi, H.; Mseddi, S.; Djemel, S., Preparation and characterization of Na-LTA zeolite from Tunisian sand and aluminum scrap. Physics Procedia 2009, 2 (3), 1065-1074. https://doi.org/10.1016/j.phpro.2009.11.064
[13] Sachse, A.; Garcia-Martinez, J., Surfactant-templating of zeolites: from design to application. Chem. Mater. 2017, 29 (9), 3827-3853. https://doi.org/10.1021/acs.chemmater.7b00599
[14] Bae, T.-H.; Liu, J.; Thompson, J. A.; Koros, W. J.; Jones, C. W.; Nair, S., Solvothermal deposition and characterization of magnesium hydroxide nanostructures on zeolite crystals. Micropor. Mesopor. Mater. 2011, 139 (1-3), 120-129. https://doi.org/10.1016/j.micromeso.2010.10.028
[15] Khoramzadeh, E.; Mofarahi, M.; Lee, C.-H., Equilibrium adsorption study of CO2 and N2 on synthesized zeolites 13X, 4A, 5A, and beta. J. Chem. Eng. Data 2019, 64 (12), 5648-5664. https://doi.org/10.1021/acs.jced.9b00690