Investigation of physicochemical and magnetic properties of zinc ferrite (ZnFe2O4) with different ultrasonic power for enhancement of thermal conductivity of refrigeration oils

Investigation of physicochemical and magnetic properties of zinc ferrite (ZnFe2O4) with different ultrasonic power for enhancement of thermal conductivity of refrigeration oils

Poppy Puspitasari, Avita Ayu Permanasari, Boby Wahyudi, Diki Dwi Pramono, Sri Hastuty

Abstract. Zinc ferrite (ZnFe2O4) nanoparticles have gained significant attention globally, particularly due to their superior chemical properties, magnetic properties, and heat transfer referring to their particle size. The sonochemical technique is one of the most applied methods to prepare zinc ferrite nanoparticles as it offers faster reaction and the ability to break large aggregates into smaller aggregates up to nanoscale. This research uses sonochemical method with power variations of 25%, 50%, and 75% to obtain zinc ferrite nanoparticles, zinc ferrite nanoparticles obtained are then analyzed for morphology, phase, crystallite size, functional groups and magnetic properties. Then the obtained zinc ferrite nanoparticles were synthesized using 0.3% Polyester Oil (POE), this method was employed to analyze the nanolubricant as a refrigerant fluid additive. The nanolubricant was characterized using thermal conductivity. The smallest crystal, 11.51 nm, was found in the sample with 50% power. The functional groups confirmed the presence of Fe-O and Zn-O cation bonds in the octahedral and tetrahedral regions. Magnetic properties shows that zinc ferrite resulting from power variation 25%, 50%, and 75% is superparamagnetic. The characterization results show that the obtained zinc ferrite can be used as a nanolubricant in refrigerant fluid.

Keywords
Ultrasonic Power, Zinc Ferrite, Sonochemical, Nanolubricant, Polyolester Oil

Published online 4/25/2025, 12 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Poppy Puspitasari, Avita Ayu Permanasari, Boby Wahyudi, Diki Dwi Pramono, Sri Hastuty, Investigation of physicochemical and magnetic properties of zinc ferrite (ZnFe2O4) with different ultrasonic power for enhancement of thermal conductivity of refrigeration oils, Materials Research Proceedings, Vol. 53, pp 105-116, 2025

DOI: https://doi.org/10.21741/9781644903575-10

The article was published as article 10 of the book Decarbonization Technology

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A.V. Humbe, J.S. Kounsalye, S.B. Somvanshi, A. Kumar, K.M. Jadhav, Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn Teller ion (Cu2+) substitution, Mater. Adv. 1 (2020) 880–890. https://doi.org/10.1039/D0MA00251H
[2] P.P. Goswami, H.A. Choudhury, S. Chakma, V.S. Moholkar, Sonochemical Synthesis of Cobalt Ferrite Nanoparticles, International Journal of Chemical Engineering 2013 (2013) 1–6. https://doi.org/10.1155/2013/934234
[3] S. Fabbiyola, L.J. Kennedy, T. Ratnaji, J.J. Vijaya, U. Aruldoss, M. Bououdina, Effect of Fe-doping on the structural, optical and magnetic properties of ZnO nanostructures synthesised by co-precipitation method, Ceramics International 8842 (2015) 1–32. https://doi.org/10.1016/j.ceramint.2015.09.110
[4] M.A.A. Kerroum, A. Essyed, C. Iacovita, W. Baaziz, D. Ihiawakrim, O. Mounkachi, M. Hamedoun, A. Benyoussef, M. Benaissa, O. Ersen, The effect of basic pH on the elaboration of ZnFe 2 O 4 nanoparticles by co-precipitation method : structural , magnetic and hyperthermia characterization Abstract, Journal of Magnetism and Magnetic Materials 8853 (2019) 1–18. https://doi.org/10.1016/j.jmmm.2019.01.081
[5] M. Gupta, V. Singh, Z. Said, Heat transfer analysis using zinc Ferrite/water (Hybrid) nanofluids in a circular tube: An experimental investigation and development of new correlations for thermophysical and heat transfer properties, Sustainable Energy Technologies and Assessments 39 (2020) 100720. https://doi.org/10.1016/j.seta.2020.100720
[6] Ç.V. Yıldırım, M. Sarıkaya, T. Kıvak, Ş. Şirin, The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625, Tribology International 134 (2019) 443–456. https://doi.org/10.1016/j.triboint.2019.02.027
[7] H. Hegab, U. Umer, M. Soliman, H.A. Kishawy, Effects of nano-cutting fluids on tool performance and chip morphology during machining Inconel 718, International Journal of Advanced Manufacturing Technology 96 (2018) 3449–3458. https://doi.org/10.1007/s00170-018-1825-0
[8] A.K. Sharma, A.K. Tiwari, A.R. Dixit, Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review, Journal of Cleaner Production 127 (2016) 1–18. https://doi.org/10.1016/j.jclepro.2016.03.146
[9] Y. Yang, J. Lan, X. Li, Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy, Materials Science and Engineering: A 380 (2004) 378–383. https://doi.org/10.1016/j.msea.2004.03.073
[10] M. Sivakumar, T. Takami, H. Ikuta, A. Towata, K. Yasui, T. Tuziuti, T. Kozuka, D. Bhattacharya, Y. Iida, Fabrication of Zinc Ferrite Nanocrystals by Sonochemical Emulsification and Evaporation: Observation of Magnetization and Its Relaxation at Low Temperature, J. Phys. Chem. B 110 (2006) 15234–15243. https://doi.org/10.1021/jp055024c
[11] P. Adamou, E. Harkou, S. Hafeez, G. Manos, A. Villa, S.M. Al-Salem, A. Constantinou, N. Dimitratos, Recent progress on sonochemical production for the synthesis of efficient photocatalysts and the impact of reactor design, Ultrasonics Sonochemistry 100 (2023) 106610. https://doi.org/10.1016/j.ultsonch.2023.106610
[12] D. Lestari, Preparasi Nanokomposit ZnO/TiO2 Dengan Sonokimia Serta Uji Aktivitasnya Untuk Fotodegradasi Fenol, Indonesian Journal of Chemical Science 1 (2011).
[13] H.A. Choudhury, A. Choudhary, M. Sivakumar, V.S. Moholkar, Mechanistic investigation of the sonochemical synthesis of zinc ferrite, Ultrasonics Sonochemistry 20 (2013) 294–302. https://doi.org/10.1016/j.ultsonch.2012.06.006
[14] N. Pokhrel, P.K. Vabbina, N. Pala, Sonochemistry: Science and Engineering, Ultrasonics Sonochemistry 29 (2016) 104–128. https://doi.org/10.1016/j.ultsonch.2015.07.023
[15] S.K. Sharma, ed., Handbook of Materials Characterization, Springer International Publishing, Cham, 2018. https://doi.org/10.1007/978-3-319-92955-2
[16] G. Hübschen, I. Altpeter, R. Tschuncky, H.-G. Herrmann, eds., Materials characterization using nondestructive evaluation (NDE) methods, Elsevier/WP, Woodhead Publishing, Amsterdam Boston Cambridge Heidelberg, 2016
[17] K.E. Ramohlola, E.I. Iwuoha, M.J. Hato, K.D. Modibane, Instrumental Techniques for Characterization of Molybdenum Disulphide Nanostructures, Journal of Analytical Methods in Chemistry 2020 (2020) 1–29. https://doi.org/10.1155/2020/8896698
[18] P. Puspitasari, U.A. Rizkia, S. Sukarni, A.A. Permanasari, A. Taufiq, A.B.N.R. Putra, Effects of various sintering conditions on the structural and magnetic properties of zinc ferrite (ZnFe2O4), Materials Research 24 (2021). https://doi.org/10.1590/1980-5373-MR-2020-0300
[19] M. Esmaeili-Zare, M. Salavati-Niasari, A. Sobhani, Simple sonochemical synthesis and characterization of HgSe nanoparticles, Ultrasonics Sonochemistry 19 (2012) 1079–1086. https://doi.org/10.1016/j.ultsonch.2012.01.013
[20] A.A. Bunaciu, E. gabriela Udriştioiu, H.Y. Aboul-Enein, X-Ray Diffraction: Instrumentation and Applications, Critical Reviews in Analytical Chemistry 45 (2015) 289–299. https://doi.org/10.1080/10408347.2014.949616
[21] D.D. Pramono, P. Puspitasari, A.A. Permanasari, S. Sukarni, A. Wahyudiono, Effect of sintering time on porosity and compressibility of calcium carbonate from Amusium pleuronectes (scallop shell), in: Malang, Indonesia, 2023: p. 050003. https://doi.org/10.1063/5.0120990
[22] S.A. Morrison, C.L. Cahill, E.E. Carpenter, S. Calvin, R. Swaminathan, S.A. Morrison, C.L. Cahill, T. George, V.G. Harris, Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature, 6392 (2004) 1–5. https://doi.org/10.1063/1.1715132
[23] P.R. Chaudhari, V.M. Gaikwad, S.A. Acharya, Role of mode of heating on the synthesis of nanocrystalline zinc ferrite, Applied Nanoscience (Switzerland) 5 (2015) 711–717. https://doi.org/10.1007/s13204-014-0367-5
[24] K. Thangavadivel, K. Okitsu, G. Owens, P.J. Lesniewski, R. Nishimura, Influence of sonochemical reactor diameter and liquid height on methyl orange degradation under 200 kHz indirect sonication, Journal of Environmental Chemical Engineering 1 (2013) 275–280. https://doi.org/10.1016/j.jece.2013.05.005
[25] N.L. Arifin, Pengaruh Sonikasi Bertahap dalam Proses Degradasi Kitosan terhadap Komposisi Dan Properti Produk, (2015) 110.
[26] K. Patil, S. Kadam, P. Lokhande, S. Balgude, P. More, The effects of cobalt and magnesium co-doping on the structural and magnetic properties of ZnFe2O4 synthesized using a sonochemical process, Solid State Communications 337 (2021). https://doi.org/10.1016/j.ssc.2021.114435
[27] S.E. Ali, Influence of preparation method on phase formation, structural and magnetic properties of BiFeO3, Journal of Electroceramics 48 (2022) 95–101. https://doi.org/10.1007/s10832-021-00276-1
[28] M. Sivakumar, T. Takami, H. Ikuta, A. Towata, K. Yasui, T. Tuziuti, T. Kozuka, D. Bhattacharya, Y. Iida, Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation: Observation of magnetization and its relaxation at low temperature, Journal of Physical Chemistry B 110 (2006) 15234–15243. https://doi.org/10.1021/jp055024c
[29] V. Ramasamy Raja, A. Karthika, S. Lok Kirubahar, A. Suganthi, M. Rajarajan, Sonochemical synthesis of novel ZnFe 2 O 4 /CeO 2 heterojunction with highly enhanced visible light photocatalytic activity, Solid State Ionics 332 (2019) 55–62. https://doi.org/10.1016/j.ssi.2018.12.016
[30] C.A. Ladole, Preparation and characterization of spinel zinc ferrite ZnFe 2O 4, International Journal of Chemical Sciences 10 (2012) 1230–1234.
[31] M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties, Journal of Magnetism and Magnetic Materials 371 (2014) 43–48. https://doi.org/10.1016/j.jmmm.2014.06.059
[32] S. Kanagesan, M. Hashim, S. Tamilselvan, N.B. Alitheen, I. Ismail, M. Syazwan, M.M.M. Zuikimi, Sol-gel auto-combustion synthesis of cobalt ferrite and it’s cytotoxicity properties, Digest Journal of Nanomaterials and Biostructures 8 (2013) 1601–1610.
[33] B.S. a dan Y. Mashadi, R. Andriyani Putri, Sintesis Bahan Magnetik ZnXFe(3-X)O4 Dengan Metode Ko-Presipitasi Sebagai Penyerap Gelombang Mikro Synthesis Of The ZnXFe(3-X)O4 Magnetic Materials As Microwave Absorber By Co-Precipitation Methods, Majalah Ilmiah Pengkanian Industri (MIPI) 13 (2019) 179–186.
[34] M. Pauzan, T. Kato, S. Iwata, E. Suharyadi, Pengaruh Ukuran Butir dan Struktur Kristal terhadap Sifat Kemagnetan pada Nanopartikel Magnetit ( Fe 3 O 4 ), Prosidinga Pertemuan Ilmiah XXVII HFI (2013) 24–28.
[35] M. Afshari, A.R. Rouhani Isfahani, S. Hasani, F. Davar, K. Jahanbani Ardakani, Effect of apple cider vinegar agent on the microstructure, phase evolution, and magnetic properties of CoFe2O4 magnetic nanoparticles, International Journal of Applied Ceramic Technology 16 (2019) 1612–1621. https://doi.org/10.1111/ijac.13224
[36] S. Husain, M. Yusup, N.H. Haryanti, Suryajaya, M. Saukani, Rodiansono, S. Arjo, A. Riyanto, Characteristics of zinc ferrite nanoparticles (ZnFe 2O4) from natural iron ore, IOP Conference Series: Earth and Environmental Science 758 (2021). https://doi.org/10.1088/1755-1315/758/1/012001
[37] S. Tebriani, Analisis vibrating sample magnetometer (VSM) pada hasil elektrodeposisi lapisan Tipis magnetite menggunakan aruscontinue direct current, Natural Science Journal 5 (2019) 722–730.
[38] P.J. Wasilewski, 20 (1973) 67-72. north-holland publishing company, 20 (1973) 67–72.
[39] R.K. Asmoro, P. Puspitasari, A.A. Permanasari, M.I.H.C. Abdullah, Identification of Thermophysical and Rheological Properties of SAE 5w-30 with Addition of Hexagonal Boron Nitride, Transmisi 19 (2023) 41–48. https://doi.org/10.26905/jtmt.v19i1.9639
[40] W. Mulya, H. Dani Gustaman Syarif, T. Nuklir Nasional Bandung, Nanopartikel , Hasil Green Synthesis Dan Aplikasinya Di Mesin Pendingin Nanoparticle, a Green Synthesis Product and Its Application on Cooling Machines, Maret 5 (2018) 894
[41] M.A. Bin Saufi, H. Bin Mamat, A Review on Thermophysical Properties for Heat Transfer Enhancement of Carbon-Based Nanolubricant, Advanced Engineering Materials 23 (2021) 1–20. https://doi.org/10.1002/adem.202100403