Transient dynamic analysis: Performance evaluation of tactile measurement
Gregor Reschke, Alexander Brosius
Abstract. The assessment of mechanically joined connections, such as clinched connections, is usually conducted destructively. Applicable non-destructive testing methods like computed tomography are time-consuming and costly, or, like electrical resistance measurement, provide only a limited amount of information. A fast, non-destructive evaluation of the joints condition shall be made possible by using transient dynamic analysis (TDA). It is based on the introduction of sound waves and the evaluation of the response behavior after passing through the structure. This study focuses the application of TDA to clinched shear connections to evaluate the performance of the tactile measuring setup. Twenty-one series were investigated, covering variations in joining task, manufacturing and defect. The evaluation was carried out using machine learning to determine for which series characteristic signals may be detected. It was shown that a classification of the investigated specimens is possible, whereby the classification accuracy depends on the examined variation. Furthermore, the accuracy was evaluated as a function of frequency and results were concluded to identify the limits of the used measuring setup.
Keywords
Joining, Machine Learning, Transient Dynamic Analysis
Published online 4/1/2025, 8 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Gregor Reschke, Alexander Brosius, Transient dynamic analysis: Performance evaluation of tactile measurement, Materials Research Proceedings, Vol. 52, pp 293-300, 2025
DOI: https://doi.org/10.21741/9781644903551-36
The article was published as article 36 of the book Sheet Metal 2025
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] DIN Deutsches Institut für Normung e. V. Fertigungsverfahren Fügen: Teil 5: Fügen durch Umformen – Einordnung, Unterteilung, Begriffe 2003-09. Berlin: Beuth Verlag.
[2] Ostermann F. Anwendungstechnologie Aluminium. 3rd ed. Berlin: Springer Vieweg; 2014.
[3] Meschut G, Merklein M, Brosius A, Drummer D, Fratini L, Füssel U, et al. Review on mechanical joining by plastic deformation. Journal of Advanced Joining Processes. 2022;5:100113. https://doi.org/10.1016/j.jajp.2022.100113
[4] Europäische Forschungsgesellschaft Blechverarbeitung e.V. und DVS – Deutscher Verband für Schweißen und verwandte Verfahren e.V. Prüfung von Verbindungseigenschaften: Prüfung der Eigenschaften mechanisch und kombiniert mittels Kleben gefertigter Verbindungen 2021-06. Düsseldorf: DVS Media.
[5] Köhler D, Kupfer R, Troschitz J, Gude M. In Situ Computed Tomography-Analysis of a Single-Lap Shear Test with Clinch Points. Materials (Basel) 2021. https://doi.org/10.3390/ma14081859
[6] Lafarge R, Wolf A, Guilleaume C, Brosius A. A New Non-destructive Testing Method Applied to Clinching. In: Daehn G, Cao J, Kinsey B, Tekkaya E, Vivek A, Yoshida Y, editors. FORMING THE FUTURE: Proceedings of the 13th international conference on the. [S.l.]: Springer; 2021. p. 1461–1468. https://doi.org/10.1007/978-3-030-75381-8_121
[7] Köhler D, Stephan R, Kupfer R, Troschitz J, Brosius A, Gude M. In-situ Computed Tomography and Transient Dynamic Analysis of a Single-Lap Shear Test with a Composite-Metal Clinch Point. In: Liewald M, Verl A, Bauernhansl T, Möhring H-C, editors. Production at the Leading Edge of Technology. Cham: Springer International Publishing; 2023. p. 265–275. https://doi.org/10.1007/978-3-031-18318-8_28
[8] Köhler D, Sadeghian B, Kupfer R, Troschitz J, Gude M, Brosius A. A Method for Characterization of Geometric Deviations in Clinch Points with Computed Tomography and Transient Dynamic Analysis. KEM. 2021;883:89–96. https://doi.org/10.4028/www.scientific.net/KEM.883.89
[9] Alpaydin E. Maschinelles Lernen. 3rd ed. Berlin, Boston: De Gruyter; 2022.
[10] Sarker IH. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput Sci. 2021;2:160. https://doi.org/10.1007/s42979-021-00592-x.
[11] Hossin M, Sulaiman M. A Review on Evaluation Metrics for Data Classification Evaluations. IJDKP. 2015;5:1–11. https://doi.org/10.5121/ijdkp.2015.5201
[12] Köhler D, Sadeghian B, Troschitz J, Kupfer R, Gude M, Brosius A. Characterisation of lateral offsets in clinch points with computed tomography and transient dynamic analysis. Journal of Advanced Joining Processes. 2022;5:100089. https://doi.org/10.1016/j.jajp.2021.100089
[13] Stephan R, Ewenz L, Brosius A, Zimmermann M. Anrisserkennung an geclinchten Proben während einer zyklischen Belastung unter Nutzung eines Scanning Laser-Doppler- Vibrometers: Crack Detection on Clinched Samples during Cyclic Loading using a Scanning Laser-Doppler-Vibrometer.
[14] Heaton J. An empirical analysis of feature engineering for predictive modeling. In: SoutheastCon 2016; 3/30/2016 – 4/3/2016; Norfolk, VA, USA: IEEE; 3/30/2016 – 4/3/2016. p. 1–6. https://doi.org/10.1109/SECON.2016.7506650
[15] N. N. scikit-learn Documentation RandomForestClassifier. https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestClassifier.html. Accessed 9 Aug 2024.
[16] N. N. Documentation BayesSearchCV. https://scikit-optimize.github.io/stable/modules/
generated/skopt.BayesSearchCV.html. Accessed 2 Oct 2024.
[17] Bischl B, Binder M, Lang M, Pielok T, Richter J, Coors S, et al. Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. WIREs Data Min & Knowl 2023. https://doi.org/10.1002/widm.1484
[18] Ewenz L, Kalich J, Zimmermann M, Füssel U. Effect of Different Tool Geometries on the Mechanical Properties of Al-Al Clinch Joints. Key Engineering Materials. 2021;883:65–72. https://doi.org/10.4028/www.scientific.net/KEM.883.65
[19] Kalich J, Füssel U. Influence of the Production Process on the Binding Mechanism of Clinched Aluminum Steel Mixed Compounds. JMMP. 2021;5:105. https://doi.org/10.3390/jmmp5040105
[20] Reschke G, Brosius A. Transiente Dynamische Analyse – Vergleich zeit- und frequenzdiskreter Auswertemethoden anhand geclinchter Aluminiumverbindungen. Proceedings der Tagung Werkstoffprüfung 2024. 2024. To be published after Dec. 6, 2024