Single crystal linear array for modal decomposition analysis

Single crystal linear array for modal decomposition analysis

Eliza Baddiley, Scott D. Moss, Ben Vien, Pooia Lalbakhsh, Jaslyn Gray, Nik Rajic, Cedric Rosalie, David J. Munk, Crispin Szydzik, Arnan Mitchell, Wing K. Chiu

Abstract. The characterisation of a 16-element acoustic emission (AE) sensor manufactured using relaxor ferroelectric single crystal (RFSC) is reported. The sensor, a linear array for modal decomposition and analysis (LAMDA) based on piezoelectric transduction, can be used for AE-based damage detection in aerospace, land, and sea applications. The RFSC LAMDA sensor was mounted on a 1.6 mm thick aluminium plate, the response of the sensor to AE excitations produced via pencil lead break (PLB) was examined. PLB break-energy generated by various pencil lead-types were examined experimentally. HB pencil lead 3 mm long, 0.5 mm diameter, has a measured break-energy of 6.6 µJ. Experimentally, RFSC LAMDA was able to detect the 6.6 µJ PLB excitation at a distance of 200 mm across the 1.6 mm aluminium plate. Modal decomposition of modelled and measured signals produced by the RFSC LAMDA in response to A0 and S0 Lamb waves, in a 1.6 mm aluminium plate, are compared and found to be in good agreement.

Keywords
Acousto Ultrasonics, Single Crystal Relaxor Ferroelectric, Modal Decomposition

Published online 3/25/2025, 11 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Eliza Baddiley, Scott D. Moss, Ben Vien, Pooia Lalbakhsh, Jaslyn Gray, Nik Rajic, Cedric Rosalie, David J. Munk, Crispin Szydzik, Arnan Mitchell, Wing K. Chiu, Single crystal linear array for modal decomposition analysis, Materials Research Proceedings, Vol. 50, pp 233-243, 2025

DOI: https://doi.org/10.21741/9781644903513-27

The article was published as article 27 of the book Structural Health Monitoring

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] N. Rajic, C. Rosalie, S. van der Velden, L.F Rose, J. Smithard, W.K. Chiu, A novel high density piezoelectric sensing capability for in situ model decomposition of acoustic emissions, Proceedings of the 9th European workshop on Structural Health Monitoring. Manchester, UK, 10-13 July 2018.
[2] E. Baddiley, S.D. Moss, B. Vien, J. Gray, N. Rajic, C. Rosalie, D. Munk, C. Szydzik, A. Mitchell, W. Chiu, A single crystal Lamb wave sensing array, J. Acoust. Soc. Am. 154 (2023) A151. https://doi.org/10.1121/10.0023090
[3] C.U Grosse, M Ohtsu, D.G Aggelis, T Shiotani, Acoustic Emission Testing: Basics for research – applications in engineering, Springer Nature, 2021. https://doi.org/10.1007/978-3-030-67936-1
[4] N. Ghadarah, D. Ayre, A Review on Acoustic Emission Testing for Structural Health Monitoring of Polymer-Based Composites, Sensors. 23 (2023) 6945. https://doi.org/10.3390/s23156945
[5] Z. Su and L. Ye, Identification of Damage Using Lamb Waves, Lecture Notes in Applied and Computational Mechanics. 48 (2009) 15-58. https://doi.org/10.1007/978-1-84882-784-4_2
[6] M.J. Schipper, J. Gray, D. J. Munk, S. D. Moss, N. Rajic, C. Rosalie, J. Smithard, B. Vien, W. K. Chiu, C. Szydzik, A. Mitchell, Improving the performance of a lamb wave sensing array via relaxor ferroelectric single crystal transduction, Mater. Research Proc. 27 (2023) 84-94. https://doi.org/10.21741/9781644902455-11
[7] Y. He, S. Chen, D. Zhou, S. Huang, P. Wang, Shared Excitation Based Nonlinear Ultrasound and Vibrothermography Testing for CFRP Barely Visible Impact Damage Inspection. IEEE Trans. Indust. Info. 14 (2018) 5575-5584. https://doi.org/10.1109/TII.2018.2820816
[8] A. Wronkowicz-Katunin, A. Katunin, K. Dragan, Reconstruction of Barely Visible Impact Damage in Composite Structures Based on Non-Destructive Evaluation Results, Sensors. 19 (2019) 4629. https://doi.org/10.3390/s19214629
[9] D. Girolamo, L. Girolamo, F.G. Yuan, Automated laser-based barely visible impact damage detection in honeycomb sandwich composite structures, AIP Conf. Proc. 1650 (2015) 1392-1400. https://doi.org/10.1063/1.4914754
[10] S. Shan, L. Cheng, Mode-mixing-induced second harmonic A0 mode Lamb wave for local incipient damage inspection. Smart Mater. Struct. 29 (2020) 055020. https://doi.org/10.1088/1361-665X/ab7e37
[11] C.K. Lee, P.D. Wilcox, B.W. Drinkwater, J.J. Scholey, M.R. Wisnom, M.I. Friswell, Acoustic Emission during Fatigue Crack Growth in Aluminium Plates, Proc. ECNDT. 25-29 (2006) 1-8. https://doi.org/10.4028/0-87849-420-0.23
[12] D.N. Alleyne, P. Cawley, The interaction of Lamb waves with defects, IEEE T. Ultrason. Ferr. 39 (1992) 381-397. https://doi.org/10.1109/58.143172
[13] D. Alleyne, P. Cawley, A Two-Dimensional Fourier Transform Method for the Measurement for Propagating Multimode Signals. J. Acoust. Soc. Am. 89 (1991) 1159-1168. https://doi.org/10.1121/1.400530
[14] N. Rajic, C. Davis, A. Thomson, Acoustic-wave-mode separation using a distributed Bragg Grating Sensor, Smart Mater. Struct. 18 (2009) 125005. https://doi.org/10.1088/0964-1726/18/12/125005
[15] N. Rajic, C. Rosalie, B.S. Vien, S. van der Velden, L.F. Rose, J. Smithard and W.K. Chui, In situ wave number-frequency modal decomposition of acoustic emissions. Struct. Health Mon. 19 (2020) 2033-2050. https://doi.org/10.1177/1475921719885324
[16] X. Yao, B.S. Vien, N. Rajic, C. Rosalie, L.R.F. Rose, C. Davies, W.K. Chiu, Modal Decomposition of Acoustic Emissions from Pencil-Lead Breas in an Isotropic Thin Plate, Sensors. 23 (2023) 1988. https://doi.org/10.3390/s23041988
[17] R. Madarshahian, V. Soltangharaei, R. Anay, J.M. Caicedo, P. Ziehl, Hsu-Nielsen source acoustic emission data on a concrete block. Data in Brief. 23 (2019) 103813. https://doi.org/10.1016/j.dib.2019.103813
[18] M.G Sause, Investigation of pencil-lead breaks as acoustic emission sources, J. Acoust. Emission. 29 (2011) 184-196.
[19] E. Sun, S. Zhang, J. Luo, T.R. Shrout, W. Cao, Elastic, dielectric, and piezoelectric constants of Pb(In1/2Nb1/2)O3-P(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled along [011]c, App. Phys. Lett. 97 (2010) 032902. https://doi.org/10.1063/1.3466906
[20] B. Pavlakovic, M. Lowe, D. Alleyne, P. Crawley, Disperse: A General Purpose Program for Creating Dispersion Curves, Rev. Prog. Quant. Non-destructive Eval. 16A (1997) 185-192. https://doi.org/10.1007/978-1-4615-5947-4_24
[21] J. Smithard, N. Rajic, S. van der Velden, P. Norman, C. Rosalie, S. Galea, H. Mei, B. Lin, V. Giurgiutiu, An Advanced Multi-Sensor Acousto-Ultrasonic Structural Health Monitoring System: Development and Aerospace Demonstration, Materials. 10 (2017) 832. https://doi.org/10.3390/ma10070832
[22] Information on COMSOL Multiphysics, Resolving time dependent waves, https://www.comsol.com/support/knowledgebase/1118 (accessed 18th January 2024).