Cutting-Edge Mesoporous Materials for Biotechnological Applications in Separation Science
Nethravathi, Sneha Nayak, Arun M. Isloor
Mesoporous materials (MMs) have emerged as biocompatible and versatile material for biotechnological applications, particularly for protein separation and purification. This review provides a one stop overview of MMs, their types and their synthesis approaches. In addition, the existing challenges and limitations faced for large-scale production of MMs, such as the complexity of synthesis processes, the need for sophisticated characterization techniques, and the difficulties in achieving reproducible MMs with structural integrity at a large scale is emphasized. Additionally, the review stresses the future perspectives of using artificial intelligence (AI) and machine learning (ML) techniques in the design and optimization of MMs. These AI driven technologies can act as crucial tools for enhancing the performance of MMs by predicting their structural and mechanical properties based on characterization data using predictive modeling, potentially reducing the reliance on expensive, high-end equipment’s. Finally, the future prospects of MMs in biotechnological protein separation, purification and enzyme immobilization applications. Furthermore, the use of MMs as effective drug delivery carriers and innovative reusable adsorbents for adsorption of heavy metals and organic contaminants (dyes and antibiotics) are also emphasized. The ongoing advancements in AI and ML, coupled with innovative material design strategies by optimization strategies, are likely to expand the scalability and practical utility of MMs, making them indispensable tools in modern biotechnology.
Keywords
Mesoporous, Separation, Biotechnology, Proteins, Purification
Published online 3/20/2025, 43 pages
Citation: Nethravathi, Sneha Nayak, Arun M. Isloor, Cutting-Edge Mesoporous Materials for Biotechnological Applications in Separation Science, Materials Research Foundations, Vol. 173, pp 222-264, 2025
DOI: https://doi.org/10.21741/9781644903452-9
Part of the book on Mesoporous Materials
References
[1] I. Modasiya, P. Mori, and S. Goswami, “Microbial Production of r-DNA Products,” Microbial Products for Health and Nutrition, pp. 131–157, 2024. https://doi.org/10.1007/978-981-97-4235-6_6
[2] M. B. Falasconi, A. Bertino, L. Mazzeo, F. Caputo, and V. Piemonte, “Membranes for the downstream treating of biotechnology processes,” Current Trends and Future Developments on (Bio-) Membranes: Advances on Membrane Engineering, pp. 519–547, Jan. 2024. https://doi.org/10.1016/B978-0-323-90258-8.00028-6
[3] F. N. U. Akshit et al., “Technological challenges in production of goat milk products and strategies to overcome them: a review,” International Journal of Food Science & Technology, vol. 59, no. 1, pp. 6–16, Jan. 2024. https://doi.org/10.1111/IJFS.16782
[4] A. Schmidt, A. Hengelbrock, and J. Strube, “Continuous biomanufacturing in upstream and downstream processing,” Physical Sciences Reviews, Dec. 2023. https://doi.org/10.1515/PSR-2022-0106/XML
[5] I. I. Amarakoon, C. L. Hamilton, S. A. Mitchell, P. F. Tennant, and M. E. Roye, “Biotechnology: principles and applications,” Pharmacognosy: Fundamentals, Applications, and Strategies, Second Edition, pp. 627–645, Jan. 2023. https://doi.org/10.1016/B978-0-443-18657-8.00017-7
[6] K. Chakraborty, S. Dhara, A. Saijan, N. Alex, and K. P. Shilpa, “Chromatographic methods to isolate marine natural products from seaweeds,” 2024
[7] K. Shanu, S. Choudhary, S. Kumari, K. Anu, and S. Devi, “Downstream Processing for Bio-product Recovery and Purification,” Recent Advances in Bioprocess Engineering and Bioreactor Design, pp. 139–169, 2024. https://doi.org/10.1007/978-981-97-1451-3_7
[8] S. Kendir and M. Franzreb, “Synergies of pH-induced calcium phosphate precipitation and magnetic separation for energy-efficient harvesting of freshwater microalgae,” Bioresource Technology, vol. 391, p. 129964, Jan. 2024. https://doi.org/10.1016/J.BIORTECH.2023.129964
[9] M. A. Alam, T. Yuan, X. Wenlong, B. Zhang, Y. Lv, and J. Xu, “Process optimization for the production of high-concentration ethanol with Scenedesmus raciborskii biomass,” Bioresource Technology, vol. 294, p. 122219, Dec. 2019. https://doi.org/10.1016/J.BIORTECH.2019.122219
[10] E. G. Fawaz, D. A. Salam, S. S. Rigolet, and T. J. Daou, “Hierarchical Zeolites as Catalysts for Biodiesel Production from Waste Frying Oils to Overcome Mass Transfer Limitations,” Molecules 2021, Vol. 26, Page 4879, vol. 26, no. 16, p. 4879, Aug. 2021. https://doi.org/10.3390/MOLECULES26164879
[11] N. Mohassel Yazdi and M. R. Naimi-Jamal, “One-pot synthesis of quinazolinone heterocyclic compounds using functionalized SBA-15 with natural material ellagic acid as a novel nanocatalyst,” Scientific Reports 2024 14:1, vol. 14, no. 1, pp. 1–15, May 2024. https://doi.org/10.1038/s41598-024-61803-y
[12] P. Satishkumar, A. M. Isloor, L. N. Rao, and R. Farnood, “Fabrication of 2D Vanadium MXene Polyphenylsulfone Ultrafiltration Membrane for Enhancing the Water Flux and for Effective Separation of Humic Acid and Dyes from Wastewater,” ACS Omega, vol. 9, no. 24, pp. 25766–25778, Jun. 2024. https://doi.org/10.1021/acsomega.3c10078
[13] M. Kumar, A. M. Isloor, S. R. Todeti, A. F. Ismail, and R. Farnood, “Hydrophilic nano-aluminum oxide containing polyphenylsulfone hollow fiber membranes for the extraction of arsenic (As-V) from drinking water,” Journal of Water Process Engineering, vol. 44, p. 102357, Dec. 2021. https://doi.org/10.1016/J.JWPE.2021.102357
[14] M. Cui et al., “Corrosion protection of Aluminium Alloy 2024 through an epoxy coating embedded with smart microcapsules: The responses of smart microcapsules to corrosive entities,” Corrosion Communications, vol. 1, pp. 1–9, Mar. 2021. https://doi.org/10.1016/J.CORCOM.2021.06.001
[15] F. G. H. S. Pinto, V. P. da S. Caldeira, J. Villarroel-Rocha, K. Sapag, S. B. C. Pergher, and A. G. D. Santos, “Al/SBA-15 Mesoporous Material: A Study of pH Influence over Aluminum Insertion into the Framework,” Nanomaterials 2024, Vol. 14, Page 208, vol. 14, no. 2, p. 208, Jan. 2024. https://doi.org/10.3390/NANO14020208
[16] Y. Wu, Y. Zhang, J. Zhou, and D. Gu, “Recent progress on functional mesoporous materials as catalysts in organic synthesis,” Emergent Materials, vol. 3, no. 3, pp. 247–266, Jun. 2020. https://doi.org/10.1007/S42247-020-00086-1/METRICS
[17] I. A. Spiridon, I. D. Căruntu, I. Spiridon, and R. Brăescu, “Insight into Potential Biomedical Application of Mesoporous Materials,” Pharmaceutics 2022, Vol. 14, Page 2382, vol. 14, no. 11, p. 2382, Nov. 2022. https://doi.org/10.3390/PHARMACEUTICS14112382
[18] L. Zu et al., “Mesoporous Materials for Electrochemical Energy Storage and Conversion,” Advanced Energy Materials, vol. 10, no. 38, p. 2002152, Oct. 2020. https://doi.org/10.1002/AENM.202002152
[19] B. Sartori, H. Amenitsch, and B. Marmiroli, “Functionalized Mesoporous Thin Films for Biotechnology,” Micromachines 2021, Vol. 12, Page 740, vol. 12, no. 7, p. 740, Jun. 2021. https://doi.org/10.3390/MI12070740
[20] R. Lyu et al., “Efficient adsorption of methylene blue by mesoporous silica prepared using sol-gel method employing hydroxyethyl cellulose as a template,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 606, p. 125425, Dec. 2020. https://doi.org/10.1016/J.COLSURFA.2020.125425
[21] K. W. Kim, B. Park, J. Kim, C. Jo, and J. K. Kim, “Recent progress in block copo lymer s oft-template-assisted synthesis of versatile mesoporous materials for energy storage systems,” Journal of Materials Chemistry A, vol. 11, no. 14, pp. 7358–7386, Apr. 2023. https://doi.org/10.1039/D2TA09353G
[22] T. Haynes, O. Bougnouch, V. Dubois, and S. Hermans, “Preparation of mesoporous silica nanocapsules with a high specific surface area by hard and soft dual templating approach: Application to biomass valorization catalysis,” Microporous and Mesoporous Materials, vol. 306, p. 110400, Oct. 2020. https://doi.org/10.1016/J.MICROMESO.2020.110400
[23] L. Ndlwana et al., “Sustainable Hydrothermal and Solvothermal Synthesis of Advanced Carbon Materials in Multidimensional Applications: A Review,” Materials 2021, Vol. 14, Page 5094, vol. 14, no. 17, p. 5094, Sep. 2021. https://doi.org/10.3390/MA14175094
[24] S. Akbar, J. M. Elliott, A. M. Squires, and A. Anwar, “Optimum conditions for electrochemical deposition of 3-D mesoporous platinum framework,” Journal of Nanoparticle Research, vol. 22, no. 6, pp. 1–9, Jun. 2020. https://doi.org/10.1007/S11051-020-04912-9/FIGURES/6
[25] S. Belbekhouche et al., “Fabrication of large pore mesoporous silica microspheres by salt-assisted spray-drying method for enhanced antibacterial activity and pancreatic cancer treatment,” International Journal of Pharmaceutics, vol. 590, p. 119930, Nov. 2020. https://doi.org/10.1016/J.IJPHARM.2020.119930
[26] B. Díaz de Greñu et al., “Fast Microwave-Assisted Synthesis, Calcination and Functionalization of a Silica Mesoporous Nanomaterial: UVM-7,” ChemSusChem, vol. 16, no. 12, p. e202300123, Jun. 2023. https://doi.org/10.1002/CSSC.202300123
[27] Z. Li, L. Liu, Z. Wang, P. Gao, and G. K. Li, “Synthesis and Application of Mesoporous Materials: Process Status, Technical Problems, and Development Prospects: A Mini-Review,” Energy and Fuels, vol. 37, no. 5, pp. 3413–3427, Mar. 2023. https://doi.org/10.1021/ACS.ENERGYFUELS.2C03882/ASSET/IMAGES/MEDIUM/EF2C03882_0009.GIF
[28] S. Mehdipour-Ataei and E. Aram, “Mesoporous Carbon-Based Materials: A Review of Synthesis, Modification, and Applications,” vol. 13, no. 2, 2022. https://doi.org/10.3390/catal13010002
[29] J. Li, R. Li, W. Wang, K. Lan, and D. Zhao, “Ordered Mesoporous Crystalline Frameworks Toward Promising Energy Applications,” Advanced Materials, vol. 36, no. 16, p. 2311460, Apr. 2024. https://doi.org/10.1002/ADMA.202311460
[30] F. Jia et al., “Immobilization of Enzymes on Cyclodextrin-Anchored Dehiscent Mesoporous TiO2 for Efficient Photoenzymatic Hydroxylation,” ACS Applied Materials and Interfaces, vol. 15, no. 6, pp. 7928–7938, Feb. 2023. https://doi.org/10.1021/ACSAMI.2C17971/SUPPL_FILE/AM2C17971_SI_001.PDF
[31] A. Rocío Hernández et al., “Disordered mesoporous silica particles: an emerging platform to deliver proteins to the lungs,” Drug Delivery, vol. 31, no. 1, Dec. 2024. https://doi.org/10.1080/10717544.2024.2381340
[32] L. Yu et al., “Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids,” Advanced Materials, p. 2305171, 2023. https://doi.org/10.1002/ADMA.202305171
[33] Q. Lei et al., “Sol–Gel-Based Advanced Porous Silica Materials for Biomedical Applications,” Advanced Functional Materials, vol. 30, no. 41, p. 1909539, Oct. 2020. https://doi.org/10.1002/ADFM.201909539
[34] A. G. Gebretatios, A. R. Kadiri Kanakka Pillantakath, T. Witoon, J. W. Lim, F. Banat, and C. K. Cheng, “Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments,” Chemosphere, vol. 310, p. 136843, Jan. 2023. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136843
[35] A. E. Garcia-Bennett, “Synthesis, Toxicology and Potential of Ordered Mesoporous Materials in Nanomedicine,” Nanomedicine, vol. 6, no. 5, pp. 867–877, Jul. 2011. https://doi.org/10.2217/nnm.11.82
[36] A. Saleem, Y. Zhang, M. Usman, M. Haris, and P. Li, “Tailored architectures of mesoporous carbon nanostructures: From synthesis to applications,” Nano Today, vol. 46, p. 101607, Oct. 2022. https://doi.org/10.1016/j.nantod.2022.101607
[37] M. Chandrashekhar Nayak, A. M. Isloor, Inamuddin, B. Lakshmi, H. M. Marwani, and I. Khan, “Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: Fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2+ from aqueous solutions,” Arabian Journal of Chemistry, vol. 13, no. 3, pp. 4661–4672, Mar. 2020. https://doi.org/10.1016/J.ARABJC.2019.10.007
[38] V. R. Pereira, A. M. Isloor, U. K. Bhat, A. F. Ismail, A. Obaid, and H. K. Fun, “Preparation and performance studies of polysulfone-sulfated nano-titania (S-TiO 2 ) nanofiltration membranes for dye removal,” RSC Advances, vol. 5, no. 66, pp. 53874–53885, Jun. 2015. https://doi.org/10.1039/C5RA07994B
[39] S. I. Gnani Peer Mohamed, A. M. Isloor, and R. Farnood, “Catalyst- and Stabilizer-Free Rational Synthesis of Ionic Polymer Nanoparticles in One Step for Oil/Water Separation Membranes,” ACS Appl. Mater. Interfaces, vol. 14, no. 40, pp. 45800–45809, Oct. 2022. https://doi.org/10.1021/acsami.2c11814
[40] G. P. Syed Ibrahim, A. M. Isloor, M. Bavarian, and S. Nejati, “Integration of Zwitterionic Polymer Nanoparticles in Interfacial Polymerization for Ion Separation,” ACS Applied Polymer Materials, vol. 2, no. 4, pp. 1508–1517, Apr. 2020. https://doi.org/10.1021/ACSAPM.9B01192/SUPPL_FILE/AP9B01192_SI_001.PDF
[41] R. S. Hebbar, A. M. Isloor, and A. F. Ismail, “Preparation and evaluation of heavy metal rejection properties of polyetherimide/porous activated bentonite clay nanocomposite membrane,” RSC Advances, vol. 4, no. 88, pp. 47240–47248, Sep. 2014. https://doi.org/10.1039/C4RA09018G
[42] M. Padaki, A. M. Isloor, K. K. Nagaraja, H. S. Nagaraja, and M. Pattabi, “Conversion of microfiltration membrane into nanofiltration membrane by vapour phase deposition of aluminium for desalination application,” Desalination, vol. 274, no. 1–3, pp. 177–181, Jul. 2011. https://doi.org/10.1016/J.DESAL.2011.02.007
[43] I. Moideen K, A. M. Isloor, A. F. Ismail, A. Obaid, and H. K. Fun, “Fabrication and characterization of new PSF/PPSU UF blend membrane for heavy metal rejection,” New pub: Balaban, vol. 57, no. 42, pp. 19810–19819, Sep. 2015. https://doi.org/10.1080/19443994.2015.1106985
[44] M. Padaki, A. M. Isloor, P. Wanichapichart, and A. F. Ismail, “Preparation and characterization of sulfonated polysulfone and N-phthloyl chitosan blend composite cation-exchange membrane for desalination,” Desalination, vol. 298, pp. 42–48, Jul. 2012. https://doi.org/10.1016/J.DESAL.2012.04.025
[45] R. S. Hebbar, A. M. Isloor, B. Prabhu, Inamuddin, A. M. Asiri, and A. F. Ismail, “Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay,” Scientific Reports 2018 8:1, vol. 8, no. 1, pp. 1–16, Mar. 2018. https://doi.org/10.1038/s41598-018-22837-1
[46] R. S. Hebbar, A. M. Isloor, Inamuddin, Mohd. S. Abdullah, A. F. Ismail, and A. M. Asiri, “Fabrication of polyetherimide nanocomposite membrane with amine functionalised halloysite nanotubes for effective removal of cationic dye effluents,” Journal of the Taiwan Institute of Chemical Engineers, vol. 93, pp. 42–53, Dec. 2018. https://doi.org/10.1016/j.jtice.2018.07.032
[47] R. S. Hebbar, A. M. Isloor, and A. F. Ismail, “Preparation of antifouling polyetherimide/hydrolysed PIAM blend nanofiltration membranes for salt rejection applications,” RSC Advances, vol. 4, no. 99, pp. 55773–55780, Oct. 2014. https://doi.org/10.1039/C4RA05791K
[48] G. P. Syed Ibrahim, A. M. Isloor, A. F. Ismail, and R. Farnood, “One-step synthesis of zwitterionic graphene oxide nanohybrid: Application to polysulfone tight ultrafiltration hollow fiber membrane,” Scientific Reports 2020 10:1, vol. 10, no. 1, pp. 1–13, Apr. 2020. https://doi.org/10.1038/s41598-020-63356-2
[49] G. P. S. Ibrahim, A. M. Isloor, Inamuddin, A. M. Asiri, and R. Farnood, “Tuning the surface properties of Fe3O4 by zwitterionic sulfobetaine: application to antifouling and dye removal membrane,” Int. J. Environ. Sci. Technol., vol. 17, no. 9, pp. 4047–4060, Sep. 2020. https://doi.org/10.1007/s13762-020-02730-z
[50] R. S. Hebbar, A. M. Isloor, A. K. Zulhairun, M. Sohaimi Abdullah, and A. F. Ismail, “Efficient treatment of hazardous reactive dye effluents through antifouling polyetherimide hollow fiber membrane embedded with functionalized halloysite nanotubes,” Journal of the Taiwan Institute of Chemical Engineers, vol. 72, pp. 244–252, 2017. https://doi.org/10.1016/j.jtice.2017.01.022
[51] M. Kumar et al., “Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water,” International Journal of Biological Macromolecules, vol. 129, pp. 715–727, May 2019. https://doi.org/10.1016/J.IJBIOMAC.2019.02.017
[52] S. Kumar, M. M. Malik, and R. Purohit, “Synthesis Methods of Mesoporous Silica Materials,” Materials Today: Proceedings, vol. 4, no. 2, Part A, pp. 350–357, Jan. 2017. https://doi.org/10.1016/j.matpr.2017.01.032
[53] D. G. Lavrova et al., “Biocompatible Silica-Polyethylene Glycol-Based Composites for Immobilization of Microbial Cells by Sol-Gel Synthesis,” Polymers, vol. 15, no. 2, Art. no. 2, Jan. 2023. https://doi.org/10.3390/polym15020458
[54] J. Liu et al., “A general synthesis of mesoporous metal oxides with well-dispersed metal nanoparticles via a versatile sol–gel process,” Journal of Materials Chemistry A, vol. 1, no. 12, pp. 4038–4047, 2013. https://doi.org/10.1039/C3TA00570D
[55] F. Adam, T.-S. Chew, and J. Andas, “A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass,” J Sol-Gel Sci Technol, vol. 59, no. 3, pp. 580–583, Sep. 2011. https://doi.org/10.1007/s10971-011-2531-7
[56] B. Tessema, G. Gonfa, S. M. Hailegiorgis, and S. V. Prabhu, “Synthesis and Characterization of Modified Silica Gel from Teff Straw Ash Using Sol-gel Method,” Next Materials, vol. 3, p. 100146, Apr. 2024. https://doi.org/10.1016/j.nxmate.2024.100146
[57] J. Zhang, Y. Ma, F. Shi, L. Liu, and Y. Deng, “Room temperature ionic liquids as templates in the synthesis of mesoporous silica via a sol–gel method,” Microporous and Mesoporous Materials, vol. 119, no. 1, pp. 97–103, Mar. 2009. https://doi.org/10.1016/j.micromeso.2008.10.003
[58] “Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride – ScienceDirect.” Accessed: Aug. 06, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S000862230800609X
[59] “Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications – ScienceDirect.” Accessed: Aug. 07, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0366317517300225
[60] K. S. Yoo, T. G. Lee, and J. Kim, “Preparation and characterization of mesoporous TiO2 particles by modified sol–gel method using ionic liquids,” Microporous and Mesoporous Materials, vol. 84, no. 1, pp. 211–217, Sep. 2005. https://doi.org/10.1016/j.micromeso.2005.05.029
[61] M. R. Benzigar et al., “Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications,” Chemical Society Reviews, vol. 47, no. 8, pp. 2680–2721, 2018. https://doi.org/10.1039/C7CS00787F
[62] “Quantitative Control of Pore Size of Mesoporous Carbon Nanospheres through the Self‐Assembly of Diblock Copolymer Micelles in Solution – Tian – 2016 – Small – Wiley Online Library.” Accessed: Aug. 08, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201600364
[63] D. Liu et al., “Surfactant Assembly within Pickering Emulsion Droplets for Fabrication of Interior-Structured Mesoporous Carbon Microspheres,” Angewandte Chemie, vol. 130, no. 34, pp. 11065–11070, 2018. https://doi.org/10.1002/ange.201805022
[64] L. Peng et al., “Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures,” Chem, vol. 7, no. 4, pp. 1020–1032, Apr. 2021. https://doi.org/10.1016/j.chempr.2021.01.001
[65] “Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres | Nano Letters.” Accessed: Aug. 09, 2024. [Online]. Available: https://pubs.acs.org/doi/full/10.1021/nl404316v
[66] “Synthesis of Ordered Mesoporous Silica with Tunable Morphologies and Pore Sizes via a Nonpolar Solvent-Assisted Stöber Method | Chemistry of Materials.” Accessed: Aug. 09, 2024. [Online]. Available: https://pubs.acs.org/doi/full/10.1021/acs.chemmater.6b00499
[67] “Space‐Confined Polymerization: Controlled Fabrication of Nitrogen‐Doped Polymer and Carbon Microspheres with Refined Hierarchical Architectures – Wang – 2019 – Advanced Materials – Wiley Online Library.” Accessed: Aug. 09, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201807876
[68] “Ionic Liquid-Assisted Synthesis of Mesoporous Carbons with Surface-Enriched Nitrogen for the Hydrogen Evolution Reaction | ACS Applied Materials & Interfaces.” Accessed: Aug. 09, 2024. [Online]. Available: https://pubs.acs.org/doi/full/10.1021/acsami.7b14919
[69] “Generalized and Facile Synthesis Approach to N-Doped Highly Graphitic Mesoporous Carbon Materials | Chemistry of Materials.” Accessed: Aug. 12, 2024. [Online]. Available: https://pubs.acs.org/doi/full/10.1021/cm048057y
[70] “Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage | Scientific Reports.” Accessed: Aug. 12, 2024. [Online]. Available: https://www.nature.com/articles/srep01935
[71] “Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance,” Materials & Design, vol. 201, p. 109518, Mar. 2021. https://doi.org/10.1016/j.matdes.2021.109518
[72] “Structurally Ordered Mesoporous Carbon Nanoparticles as Transmembrane Delivery Vehicle in Human Cancer Cells | Nano Letters.” Accessed: Aug. 12, 2024. [Online]. Available: https://pubs.acs.org/doi/abs/10.1021/nl801976m
[73] “Facile synthesis of hierarchically porous carbonaceous materials derived from olefin/aldehyde precursors using silica as templates – RSC Advances (RSC Publishing) DOI:10.1039/C8RA01270A.” Accessed: Aug. 12, 2024. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2018/ra/c8ra01270a
[74] D. Bhattacharjya, M.-S. Kim, T.-S. Bae, and J.-S. Yu, “High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture,” Journal of Power Sources, vol. 244, pp. 799–805, Dec. 2013. https://doi.org/10.1016/j.jpowsour.2013.01.112
[75] “Mesoporous carbon nanospheres with an excellent electrocapacitive performance – Journal of Materials Chemistry (RSC Publishing) DOI:10.1039/C0JM03322G.” Accessed: Aug. 12, 2024. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2011/jm/c0jm03322g
[76] Z. Lei, Z. Chen, and X. S. Zhao, “Growth of Polyaniline on Hollow Carbon Spheres for Enhancing Electrocapacitance,” J. Phys. Chem. C, vol. 114, no. 46, pp. 19867–19874, Nov. 2010. https://doi.org/10.1021/jp1084026
[77] K. Zhang, Q. Zhao, Z. Tao, and J. Chen, “Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance,” Nano Res., vol. 6, no. 1, pp. 38–46, Jan. 2013. https://doi.org/10.1007/s12274-012-0279-1
[78] J. Goworek, A. Kierys, and R. Kusak, “Isothermal template removal from MCM-41 in hydrogen flow,” Microporous and Mesoporous Materials, vol. 98, no. 1, pp. 242–248, Jan. 2007. https://doi.org/10.1016/j.micromeso.2006.09.011
[79] L. Huang, S. Kawi, C. Poh, K. Hidajat, and S. C. Ng, “Extraction of cationic surfactant templates from mesoporous materials by CH3OH-modified CO2 supercritical fluid,” Talanta, vol. 66, no. 4, pp. 943–951, May 2005. https://doi.org/10.1016/j.talanta.2004.12.057
[80] “Rapid removal of organic template from SBA-15 with microwave assisted extraction – ScienceDirect.” Accessed: Aug. 13, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167577X09003553
[81] H. Xu, B. W. Zeiger, and K. S. Suslick, “Sonochemical synthesis of nanomaterials,” Chemical Society Reviews, vol. 42, no. 7, pp. 2555–2567, 2013. https://doi.org/10.1039/C2CS35282F
[82] A. Hozumi et al., “Photocalcination of Mesoporous Silica Films Using Vacuum Ultraviolet Light,” Advanced Materials, vol. 12, no. 13, pp. 985–987, Jun. 2000. https://doi.org/10.1002/1521-4095(200006)12:13<985::AID-ADMA985>3.0.CO;2-#
[83] “IJMS | Free Full-Text | Influence of ‘Glow Discharge Plasma’ as an External Stimulus on the Self-Assembly, Morphology and Binding Affinity of Gold Nanoparticle-Streptavidin Conjugates.” Accessed: Aug. 13, 2024. [Online]. Available: https://www.mdpi.com/1422-0067/13/6/6534
[84] X. Zhuang, X. Qian, J. Lv, and Y. Wan, “An alternative method to remove PEO–PPO–PEO template in organic–inorganic mesoporous nanocomposites by sulfuric acid extraction,” Applied Surface Science, vol. 256, no. 17, pp. 5343–5348, Jun. 2010. https://doi.org/10.1016/j.apsusc.2009.12.074
[85] H. Lv, Y. Wang, L. Sun, Y. Yamauchi, and B. Liu, “A general protocol for precise syntheses of ordered mesoporous intermetallic nanoparticles,” Nat Protoc, vol. 18, no. 10, pp. 3126–3154, Oct. 2023. https://doi.org/10.1038/s41596-023-00872-1
[86] S. Karafiludis et al., “Template-free synthesis of mesoporous and amorphous transition metal phosphate materials,” Nanoscale, vol. 15, no. 8, pp. 3952–3966, 2023. https://doi.org/10.1039/D2NR05630E
[87] C. Cocuzza et al., “Synthesis and characterization of mesoporous silicas with dendritic and spongy-like structures: Potential supports for human lactate dehydrogenase-based microreactors aimed at anticancer inhibitor screening,” Microporous and Mesoporous Materials, vol. 376, p. 113182, Aug. 2024. https://doi.org/10.1016/j.micromeso.2024.113182
[88] E. Aguilar-García et al., “Hydrogen Production by Hydrogen Sulfide Decomposition Using Cobalt Catalysts Doped in SBA-15 Synthetized by EISA Method,” Catal Lett, vol. 154, no. 7, pp. 3724–3737, Jul. 2024. https://doi.org/10.1007/s10562-023-04515-8
[89] A. Witecka, J. Schmitt, M. Courtien, C. Gérardin, and G. Rydzek, “Hybrid mesoporous silica materials templated with surfactant polyion complex (SPIC) micelles for pH-triggered drug release,” Microporous and Mesoporous Materials, vol. 365, p. 112913, Feb. 2024. https://doi.org/10.1016/j.micromeso.2023.112913
[90] G. Strukov, G. Strukova, M. Leonard, and M. M. Kuklja, “Biomimetic In Situ Self-Assembly of Metal Nanoparticles into Hierarchical 3D Mesostructures: Synthesis, Analysis, and Prospects,” Crystal Growth & Design, vol. 24, no. 14, pp. 5865–5882, Jul. 2024. https://doi.org/10.1021/acs.cgd.3c01539
[91] J. Gluns et al., “3D Printing of Ordered Mesoporous Silica Using Light-Induced Sol-Gel Chemistry,” Advanced Functional Materials, vol. n/a, no. n/a, p. 2405511. https://doi.org/10.1002/adfm.202405511
[92] L. Zhao et al., “Printing of In Situ Functionalized Mesoporous Silica with Digital Light Processing for Combinatorial Sensing,” Small, vol. 20, no. 28, p. 2311121, 2024. https://doi.org/10.1002/smll.202311121
[93] J. Salonen and V.-P. Lehto, “Fabrication and chemical surface modification of mesoporous silicon for biomedical applications,” Chemical Engineering Journal, vol. 137, no. 1, pp. 162–172, Mar. 2008. https://doi.org/10.1016/j.cej.2007.09.001
[94] S. T. Lakshmikumar and P. K. Singh, “Stabilization of porous silicon surface by low temperature photoassisted reaction with acetylene,” Current Applied Physics, vol. 3, no. 2, pp. 185–189, Apr. 2003. https://doi.org/10.1016/S1567-1739(02)00198-0
[95] S. Porrang, N. Rahemi, S. Davaran, M. Mahdavi, B. Hassanzadeh, and A. M. Gholipour, “Direct surface modification of mesoporous silica nanoparticles by DBD plasma as a green approach to prepare dual-responsive drug delivery system,” Journal of the Taiwan Institute of Chemical Engineers, vol. 123, pp. 47–58, Jun. 2021. https://doi.org/10.1016/j.jtice.2021.05.024
[96] J. A. JUAREZ-MORENO et al., “Effect of inductively coupled plasma surface treatment on silica gel and mesoporous MCM-41 particles,” Plasma Sci. Technol., vol. 20, no. 6, p. 065506, Apr. 2018. https://doi.org/10.1088/2058-6272/aaabb5
[97] J. Xu et al., “Cold plasma and ethanol coupling-activated Ni/MCM-41 catalysts with highly stability and activity for dry reforming of methane,” Microporous and Mesoporous Materials, vol. 364, p. 112847, Jan. 2024. https://doi.org/10.1016/j.micromeso.2023.112847
[98] P. T. Wai, P. Jiang, Y. Shen, P. Zhang, and Q. Gu, “Entrapment of peroxophosphotungstate in SBA-15 by silylation and its catalytic efficiency in the epoxidation of soybean oil,” Applied Catalysis A: General, vol. 596, p. 117537, Apr. 2020. https://doi.org/10.1016/j.apcata.2020.117537
[99] X. Li, J. Yuan, J. Du, H. Sui, and L. He, “Functionalized Ordered Mesoporous Silica by Vinyltriethoxysilane for the Removal of Volatile Organic Compounds through Adsorption/Desorption Process,” Ind. Eng. Chem. Res., vol. 59, no. 8, pp. 3511–3520, Feb. 2020. https://doi.org/10.1021/acs.iecr.9b06062
[100] C. G. Sonwane and S. K. Bhatia, “Characterization of Pore Size Distributions of Mesoporous Materials from Adsorption Isotherms,” J. Phys. Chem. B, vol. 104, no. 39, pp. 9099–9110, Oct. 2000. https://doi.org/10.1021/jp000907j
[101] M. N. Sarvi, T. Budianto Bee, C. K. Gooi, B. W. Woonton, M. L. Gee, and A. J. O’Connor, “Development of functionalized mesoporous silica for adsorption and separation of dairy proteins,” Chemical Engineering Journal, vol. 235, pp. 244–251, Jan. 2014. https://doi.org/10.1016/J.CEJ.2013.09.036
[102] Z. Liu, M. Li, X. Yang, M. Yin, J. Ren, and X. Qu, “The use of multifunctional magnetic mesoporous core/shell heteronanostructures in a biomolecule separation system,” Biomaterials, vol. 32, no. 21, pp. 4683–4690, Jul. 2011. https://doi.org/10.1016/J.BIOMATERIALS.2011.03.038
[103] J. Zhao et al., “Mesoporous Silica as Sorbents and Enzymatic Nanoreactors for Microbial Membrane Proteomics,” ACS Applied Materials and Interfaces, vol. 13, no. 10, pp. 11571–11578, Mar. 2021. https://doi.org/10.1021/ACSAMI.0C19528/SUPPL_FILE/AM0C19528_SI_009.XLSX
[104] S. Qi, C. Zhang, Z. Hu, and X. Chen, “Biocompatible mesoporous polymeric ionic liquid with high adsorption capacity for selective isolation of ovalbumin,” Journal of Materials Science, vol. 56, no. 34, pp. 19283–19295, Dec. 2021. https://doi.org/10.1007/S10853-021-06529-2/FIGURES/7
[105] S. S. Ding, J. P. Zhu, Y. Wang, Y. Yu, and Z. Zhao, “Recent progress in magnetic nanoparticles and mesoporous materials for enzyme immobilization: an update,” Brazilian Journal of Biology, vol. 82, p. e244496, Jun. 2021. https://doi.org/10.1590/1519-6984.244496
[106] H. M. Salvi and G. D. Yadav, “Surface functionalization of SBA-15 for immobilization of lipase and its application in synthesis of alkyl levulinates: Optimization and kinetics,” Biocatalysis and Agricultural Biotechnology, vol. 18, p. 101038, Mar. 2019. https://doi.org/10.1016/J.BCAB.2019.101038
[107] F. Esmi, T. Nematian, Z. Salehi, A. A. Khodadadi, and A. K. Dalai, “Amine and aldehyde functionalized mesoporous silica on magnetic nanoparticles for enhanced lipase immobilization, biodiesel production, and facile separation,” Fuel, vol. 291, p. 120126, May 2021. https://doi.org/10.1016/J.FUEL.2021.120126
[108] X. Li et al., “The efficient enrichment of marine peptides from the protein hydrolysate of the marine worm Urechis unicinctus by using mesoporous materials MCM-41, SBA-15 and CMK-3,” Analytical Methods, vol. 13, no. 21, pp. 2405–2414, Jun. 2021. https://doi.org/10.1039/D1AY00616A
[109] X. Liu, X. Shi, H. Wang, and H. Zhang, “Atom transfer radical polymerization of diverse functional SBA-15 for selective separation of proteins,” Microporous and Mesoporous Materials, vol. 200, pp. 165–173, Dec. 2014. https://doi.org/10.1016/J.MICROMESO.2014.08.027
[110] Y. Dong, A. Laaksonen, M. Gong, R. An, and X. Ji, “Selective Separation of Highly Similar Proteins on Ionic Liquid-Loaded Mesoporous TiO2,” Langmuir, vol. 38, no. 10, pp. 3202–3211, Mar. 2022. https://doi.org/10.1021/ACS.LANGMUIR.1C03277/ASSET/IMAGES/LARGE/LA1C03277_0007.JPEG
[111] H. R. Panchami, A. M. Isloor, and A. F. Ismail, “Improved hydrophilic and antifouling performance of nanocomposite ultrafiltration zwitterionic polyphenylsulfone membrane for protein rejection applications,” Journal of Nanostructure in Chemistry 2021, pp. 1–22, Aug. 2021. https://doi.org/10.1007/S40097-021-00416-7
[112] P. Heggabailu Rajashekhara, A. M. Isloor, and A. Fauzi Ismail, “One-step synthesis and characterization of hydrophilic polymer microspheresimmobilized with polyphenylsulfone ultraltration membranes for protein rejection application,” 2022. https://doi.org/10.21203/rs.3.rs-1331802/v1
[113] J. F. Cao, W. Xu, Y. Y. Zhang, Y. Shu, and J. H. Wang, “Chondroitin sulfate-functionalized 3D hierarchical flower-type mesoporous silica with a superior capacity for selective isolation of low density lipoprotein,” Analytica Chimica Acta, vol. 1104, pp. 78–86, Apr. 2020. https://doi.org/10.1016/J.ACA.2019.12.075
[114] Y. Luo, B. Wang, L. Yi, C. F. Ding, C. Deng, and Y. Yan, “Mesoporous materials for glycopeptide separation,” TrAC Trends in Analytical Chemistry, vol. 167, p. 117234, Oct. 2023. https://doi.org/10.1016/J.TRAC.2023.117234
[115] M. Zhang, X. Liu, W. Zhou, X. Zheng, S. Wang, and L. Zhou, “Ordered porous materials for blood purification,” Separation and Purification Technology, vol. 327, p. 124844, Dec. 2023. https://doi.org/10.1016/J.SEPPUR.2023.124844
[116] A. Singh and S. K. Yadav, “Immobilization of L-ribose isomerase on the surface of activated mesoporous MCM41 and SBA15 for the synthesis of L-ribose,” Journal of Biotechnology, vol. 362, pp. 45–53, Jan. 2023. https://doi.org/10.1016/J.JBIOTEC.2022.12.010
[117] E. C. H. T. Lau et al., “Direct purification and immobilization of his-tagged enzymes using unmodified nickel ferrite NiFe2O4 magnetic nanoparticles,” Scientific Reports 2023 13:1, vol. 13, no. 1, pp. 1–10, Dec. 2023. https://doi.org/10.1038/s41598-023-48795-x
[118] S. Ariaeenejad et al., “An efficient nano-biocatalyst for lignocellulosic biomass hydrolysis: Xylanase immobilization on organically modified biogenic mesoporous silica nanoparticles,” International Journal of Biological Macromolecules, vol. 164, pp. 3462–3473, Dec. 2020. https://doi.org/10.1016/J.IJBIOMAC.2020.08.211
[119] Z. Dong et al., “Fabrication of immobilized lipases from Candida rugosa on hierarchical mesoporous silica for enzymatic enrichment of ω-3 polyunsaturated fatty acids by selective hydrolysis,” Food Chemistry: X, vol. 22, p. 101434, Jun. 2024. https://doi.org/10.1016/J.FOCHX.2024.101434
[120] Y. Li, Z. Liu, L. Dai, D. Liu, and W. Du, “Synthesis and application of mesoporous MIL-88A for enhanced lipase immobilization and high value oil conversion,” Chemical Engineering Journal, vol. 496, p. 153802, Sep. 2024. https://doi.org/10.1016/J.CEJ.2024.153802
[121] P. J. M. Lima, N. S. Rios, E. Vilarrasa-García, J. A. Cecilia, E. Rodríguez-Castellón, and L. R. B. Gonçalves, “Preparation of a heterogeneous biocatalyst through Thermomyces lanuginosus lipase immobilization on pore-expanded SBA-15,” International Journal of Biological Macromolecules, vol. 274, p. 133359, Aug. 2024. https://doi.org/10.1016/J.IJBIOMAC.2024.133359
[122] Y. Zhang et al., “Immobilized lipase based on SBA-15 adsorption and gel embedding for catalytic synthesis of isoamyl acetate,” Food Bioscience, vol. 60, p. 104427, Aug. 2024. https://doi.org/10.1016/J.FBIO.2024.104427
[123] N. Zhong, W. Chen, L. Liu, and H. Chen, “Immobilization of Rhizomucor miehei lipase onto the organic functionalized SBA-15: Their enzymatic properties and glycerolysis efficiencies for diacylglycerols production,” Food Chemistry, vol. 271, pp. 739–746, Jan. 2019. https://doi.org/10.1016/J.FOODCHEM.2018.07.185
[124] N. S. Rios et al., “Strategies of covalent immobilization of a recombinant Candida antarctica lipase B on pore-expanded SBA-15 and its application in the kinetic resolution of (R,S)-Phenylethyl acetate,” Journal of Molecular Catalysis B: Enzymatic, vol. 133, pp. 246–258, Nov. 2016. https://doi.org/10.1016/J.MOLCATB.2016.08.009
[125] J. Tu et al., “Mesoporous Silica Nanoparticles with Large Pores for the Encapsulation and Release of Proteins,” ACS Applied Materials and Interfaces, vol. 8, no. 47, pp. 32211–32219, Nov. 2016. https://doi.org/10.1021/ACSAMI.6B11324/SUPPL_FILE/AM6B11324_SI_002.MPG
[126] T. Qiang, Y. Song, R. Zhu, and W. Yuan, “Biomass material derived hierarchical porous TiO2: Adjustable pore size for protein adsorption,” Journal of Alloys and Compounds, vol. 829, p. 154512, Jul. 2020. https://doi.org/10.1016/J.JALLCOM.2020.154512
[127] Ľ. Zauška et al., “Adsorption and Release Properties of Drug Delivery System Naproxen-SBA-15: Effect of Surface Polarity, Sodium/Acid Drug Form and pH,” Journal of Functional Biomaterials, vol. 13, no. 4, p. 275, Dec. 2022. https://doi.org/10.3390/JFB13040275/S1
[128] D. Dasgupta, M. Das, S. Thakore, A. Patel, S. Kumar, and S. Seshadri, “Development of a controlled sustainable anticancer drug delivery nanosystem comprising doxorubicin and functionalized MCM-48,” Journal of Drug Delivery Science and Technology, vol. 72, p. 103419, Jun. 2022. https://doi.org/10.1016/J.JDDST.2022.103419
[129] N. A. Atiyah, T. M. Albayati, and M. A. Atiya, “Interaction behavior of curcumin encapsulated onto functionalized SBA-15 as an efficient carrier and release in drug delivery,” Journal of Molecular Structure, vol. 1260, p. 132879, Jul. 2022. https://doi.org/10.1016/J.MOLSTRUC.2022.132879
[130] S. Ulagesan et al., “Mesoporous silica (SBA-15) with enriched amidoxime functionalities for pH-controlled anticancer drug delivery,” Inorganic Chemistry Communications, vol. 146, p. 110132, Dec. 2022. https://doi.org/10.1016/J.INOCHE.2022.110132
[131] M. Samari, S. Kashanian, S. Zinadini, and H. Derakhshankhah, “Designing of a new transdermal antibiotic delivery polymeric membrane modified by functionalized SBA-15 mesoporous filler,” Scientific Reports 2024 14:1, vol. 14, no. 1, pp. 1–14, May 2024. https://doi.org/10.1038/s41598-024-60727-x
[132] N. V. Mdlovu, K. S. Lin, M. T. Weng, Y. S. Lin, and S. Y. Liu, “Preparation and in-vitro/in-vivo evaluation of doxorubicin-loaded magnetic SBA-15 nanocomposites from rice husk for enhancing therapeutic efficacy,” Colloids and Surfaces B: Biointerfaces, vol. 220, p. 112923, Dec. 2022. https://doi.org/10.1016/J.COLSURFB.2022.112923
[133] R. Li, / Rscpharma, A. Patel, and S. Mehta, “Functionalized SBA-15: engineering, detailed study on release and kinetics of alendronate as well as its anti-tumour properties towards osteosarcoma,” RSC Pharmaceutics, 2024. https://doi.org/10.1039/D4PM00078A
[134] R. Foulady-Dehaghi, S. Sohrabnezhad, and M. Hadavi, “Drug delivery with solvent-free synthesized polyimide-COF/amino-functionalized MCM-41 nanohybrid,” Journal of Drug Delivery Science and Technology, vol. 81, p. 104283, Mar. 2023. https://doi.org/10.1016/J.JDDST.2023.104283
[135] S. Septian Dwitya, K. S. Lin, M. T. Weng, N. Vukile Mdlovu, M. T. Yang, and C. M. Wu, “Synthesis and characterization of oleic acid-stabilized cobalt ferrite @MCM-41/nanocomposites for pH-responsive drug delivery,” Journal of Industrial and Engineering Chemistry, Aug. 2024. https://doi.org/10.1016/J.JIEC.2024.08.036
[136] H. R. Hosseini, M. Abdouss, and M. Golshekan, “Hydroxyapatite Incorporated with Fe3O4@MCM-41 Core-Shell: A Promising Nanocomposite for Teriparatide Delivery in Bone Tissue Regeneration,” ACS Omega, vol. 8, no. 44, pp. 41363–41373, Nov. 2023. https://doi.org/10.1021/ACSOMEGA.3C04931/ASSET/IMAGES/LARGE/AO3C04931_0007.JPEG
[137] E. Da’na, “Adsorption of heavy metals on functionalized-mesoporous silica: A review,” Microporous and Mesoporous Materials, vol. 247, pp. 145–157, Jul. 2017. https://doi.org/10.1016/J.MICROMESO.2017.03.050
[138] M. Anbia, K. Kargosha, and S. Khoshbooei, “Heavy metal ions removal from aqueous media by modified magnetic mesoporous silica MCM-48,” Chemical Engineering Research and Design, vol. 93, pp. 779–788, Jan. 2015. https://doi.org/10.1016/J.CHERD.2014.07.018
[139] H. Javadian, B. B. Koutenaei, E. Shekarian, F. Z. Sorkhrodi, R. Khatti, and M. Toosi, “Application of functionalized nano HMS type mesoporous silica with N-(2-aminoethyl)-3-aminopropyl methyldimethoxysilane as a suitable adsorbent for removal of Pb (II) from aqueous media and industrial wastewater,” Journal of Saudi Chemical Society, vol. 21, pp. S219–S230, Jan. 2017. https://doi.org/10.1016/J.JSCS.2014.01.007
[140] R. Ezzatkhah, Z. Rahimi-Ahar, A. Babapoor, M. Nemati Tasandeh, S. Yaghoubi, and F. Valizadeh Harzand, “Urea-Functionalized mesoporous silica SBA-15 for heavy metal Adsorption: Synthesis, Characterization, and optimization,” Materials Science and Engineering: B, vol. 297, p. 116799, Nov. 2023. https://doi.org/10.1016/J.MSEB.2023.116799
[141] J. V. Ros-Lis, S. Vetter, and P. Smith, “A comparative life cycle assessment of the synthesis of mesoporous silica materials on a small and a large scale,” Green Chemistry, 2024. https://doi.org/10.1039/D4GC02347A
[142] W. Kaewprachum, S. Wongsakulphasatch, W. Kiatkittipong, A. Striolo, C. K. Cheng, and S. Assabumrungrat, “SDS modified mesoporous silica MCM-41 for the adsorption of Cu2+, Cd2+, Zn2+ from aqueous systems,” Journal of Environmental Chemical Engineering, vol. 8, no. 1, p. 102920, Feb. 2020. https://doi.org/10.1016/J.JECE.2019.102920
[143] M. Pandey, S. Shabuddhin, N. Tsunoji, S. Das, and M. Bandyopadhyay, “Extraction of heavy metals from wastewater using amine-modified mesoporous silica,” Environmental Science and Pollution Research, vol. 30, no. 53, pp. 113409–113423, Nov. 2023. https://doi.org/10.1007/S11356-023-30092-9/METRICS
[144] J. Jiang, Y. Long, X. Hu, J. Hu, M. Zhu, and S. Zhou, “A facile microwave-assisted synthesis of mesoporous hydroxyapatite as an efficient adsorbent for Pb2+ adsorption,” Journal of Solid State Chemistry, vol. 289, p. 121491, Sep. 2020. https://doi.org/10.1016/J.JSSC.2020.121491
[145] F. Hassanzadeh-Afruzi, F. Esmailzadeh, S. Asgharnasl, F. Ganjali, R. Taheri-Ledari, and A. Maleki, “Efficient removal of Pb(II)/Cu(II) from aqueous samples by a guanidine-functionalized SBA-15/Fe3O4,” Separation and Purification Technology, vol. 291, p. 120956, Jun. 2022. https://doi.org/10.1016/J.SEPPUR.2022.120956
[146] H. Vatandoust, H. Younesi, Z. Mehraban, A. Heidari, and H. Khakpour, “Comparative Adsorption of Cd (II) and Pb (II) by MCM-48 and Amine-Grafted MCM-48 in Single and Binary Component Systems,” Water Conservation Science and Engineering 2021 6:2, vol. 6, no. 2, pp. 67–78, May 2021. https://doi.org/10.1007/S41101-021-00103-2
[147] H. Li, S. Wang, R. Li, Y. Zhang, and H. Wang, “Preparation of Sulfhydryl Functionalized MCM-48 and Its Adsorption Performance for Cr(VI) in Water,” Water (Switzerland), vol. 15, no. 3, p. 524, Feb. 2023. https://doi.org/10.3390/W15030524/S1
[148] A. A. Malhis, S. H. Arar, M. K. Fayyad, and H. A. Hodali, “Amino- and thiol-modified microporous silicalite-1 and mesoporous MCM-48 materials as potential effective adsorbents for Pb(II) in polluted aquatic systems,” Adsorption Science and Technology, vol. 36, no. 1–2, pp. 270–286, Feb. 2018. https://doi.org/10.1177/0263617416689270/ASSET/IMAGES/LARGE/10.1177_0263617416689270-FIG10.JPEG
[149] S. Li et al., “Nanoconfined polyethyleneimine in mesoporous MCM-41 silica for heavy metal ions removal,” Separation and Purification Technology, vol. 353, p. 128421, Jan. 2025. https://doi.org/10.1016/J.SEPPUR.2024.128421
[150] Y. Song et al., “Uptake of arsenic(V) using iron and magnesium functionalized highly ordered mesoporous MCM-41 (Fe/Mg-MCM-41) as an effective adsorbent,” Science of The Total Environment, vol. 833, p. 154858, Aug. 2022. https://doi.org/10.1016/J.SCITOTENV.2022.154858
[151] W. Yang, S. Shirazian, R. Soltani, and M. H. Zare, “Bio-originated mesosilicate SBA-15: synthesis, characterization, and application for heavy metal removal,” npj Clean Water 2024 7:1, vol. 7, no. 1, pp. 1–15, Jun. 2024. https://doi.org/10.1038/s41545-024-00340-7
[152] F. Badvi Loulic, R. Haji Seyed Mohammad Shirazi, M. Miralinaghi, H. Ahmad Panahi, and E. Moniri, “Highly efficient removal of toxic As(V), Cd (II), and Pb(II) ions from water samples using MnFe2O4@SBA-15-(CH2)3-adenine as a recyclable bio-nanoadsorbent,” Microporous and Mesoporous Materials, vol. 356, p. 112567, Jun. 2023. https://doi.org/10.1016/J.MICROMESO.2023.112567
[153] M. H. Fekri, S. Soleymani, M. Razavi Mehr, and F. Saki, “Removal of methyl orange dye from aqueous solutions by SBA-16 nano mesopore and optimization of effective parameters using response surface method,” Iranian Journal of Health and Environment, vol. 16, no. 2, pp. 339–356, 2023
[154] R. Ma, Y. Xue, Q. Ma, Y. Chen, S. Yuan, and J. Fan, “Recent Advances in Carbon-Based Materials for Adsorptive and Photocatalytic Antibiotic Removal,” Nanomaterials (Basel, Switzerland), vol. 12, no. 22, Nov. 2022. https://doi.org/10.3390/NANO12224045
[155] V. Nairi, L. Medda, M. Monduzzi, and A. Salis, “Adsorption and release of ampicillin antibiotic from ordered mesoporous silica,” Journal of colloid and interface science, vol. 497, pp. 217–225, Jul. 2017. https://doi.org/10.1016/J.JCIS.2017.03.021
[156] E. Zhang et al., “On the origin of mesopore collapse in functionalized porous carbons,” Carbon, vol. 149, pp. 743–749, Aug. 2019. https://doi.org/10.1016/J.CARBON.2019.04.116
[157] J. Blair-González, E. Contreras-Villacura, A. Carvajal Guevara, and C. Palma Toloza, “Oxytetracycline removal by biological/chemical activated mesoporous carbon,” Microporous and Mesoporous Materials, vol. 327, p. 111384, Nov. 2021. https://doi.org/10.1016/J.MICROMESO.2021.111384
[158] T. Ariyanto, N. Y. Pradana, M. H. N. Saif, B. A. Prasetyo, I. Prasetyo, and M. Munoz, “Reusable adsorbent of magnetite in mesoporous carbon for antibiotic removal,” Environmental Science and Pollution Research, vol. 31, no. 24, pp. 35824–35834, May 2024. https://doi.org/10.1007/S11356-024-33658-3/METRICS
[159] X. Hu et al., “Insights on Size-Exclusion Effect of Ordered Mesoporous Carbon for Selective Antibiotics Adsorption Under the Interference of Natural Organic Matter,” SSRN Electronic Journal, Nov. 2022. https://doi.org/10.2139/SSRN.4281035
[160] S. Ao et al., “Sheet-like graphitized glucose-based mesoporous carbon for aqueous adsorption of tetracycline antibiotic,” DRM, vol. 141, p. 110718, Jan. 2024. https://doi.org/10.1016/J.DIAMOND.2023.110718
[161] X. Chen et al., “Insights into high-efficient removal of tetracycline by a codoped mesoporous carbon adsorbent,” Chinese Journal of Chemical Engineering, vol. 44, no. 4, p. 148, Apr. 2022. https://doi.org/10.1016/J.CJCHE.2021.07.023
[162] P. V. Mane, R. M. Rego, P. L. Yap, D. Losic, and M. D. Kurkuri, “Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water,” Progress in Materials Science, vol. 146, p. 101314, Dec. 2024. https://doi.org/10.1016/J.PMATSCI.2024.101314
[163] G. E. Gomez et al., “Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health,” Antibiotics 2024, Vol. 13, Page 173, vol. 13, no. 2, p. 173, Feb. 2024. https://doi.org/10.3390/ANTIBIOTICS13020173
[164] J. ming Gao, S. Ma, B. Wang, Z. Ma, Y. Guo, and F. Cheng, “Template-free facile preparation of mesoporous silica from fly ash for shaped composite phase change materials,” Journal of Cleaner Production, vol. 384, p. 135583, Jan. 2023. https://doi.org/10.1016/J.JCLEPRO.2022.135583
[165] A. Grisolia et al., “Hybrid Polymer-Silica Nanostructured Materials for Environmental Remediation,” Molecules 2023, Vol. 28, Page 5105, vol. 28, no. 13, p. 5105, Jun. 2023. https://doi.org/10.3390/MOLECULES28135105
[166] R. B. Jundale, J. R. Sonawane, A. V. Palghadmal, H. K. Jaiswal, H. S. Deore, and A. A. Kulkarni, “Scaling-up continuous production of mesoporous silica particles at kg scale: design & operational strategies,” Reaction Chemistry & Engineering, vol. 9, no. 7, pp. 1914–1923, Jun. 2024. https://doi.org/10.1039/D3RE00707C
[167] A. Maurya, S. Singh, and N. P. Pathak, “The Importance of Mesoporous Materials (Silica, Alumina, and Zeolite) as Solid Supports for Metal Complex Catalysts in Organic Transformations,” Journal of Inorganic and Organometallic Polymers and Materials 2024, pp. 1–21, Jul. 2024. https://doi.org/10.1007/S10904-024-03249-3
[168] S. Banerjee, A. Das, R. Das, and C. Bhattacharjee, “Mesoporous Mg–Al–Ti composite oxide incorporated mixed matrix ultrafiltration membrane with superior multi-heavy metal removal capacity, anti-fouling & anti-microbial property,” Journal of Membrane Science, vol. 703, p. 122836, Jun. 2024. https://doi.org/10.1016/J.MEMSCI.2024.122836
[169] Z. Tavakoli, B. Rasekh, F. Yazdian, A. Maghsoudi, M. Soleimani, and J. Mohammadnejad, “One-step separation of the recombinant protein by using the amine-functionalized magnetic mesoporous silica nanoparticles; an efficient and facile approach,” International Journal of Biological Macromolecules, vol. 135, pp. 600–608, Aug. 2019. https://doi.org/10.1016/J.IJBIOMAC.2019.05.114